import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.models import Sequential, load_model from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional import keras import os import banglanltk as bn # Load the dataset data = pd.read_excel("b-nersuzi.xlsx", sheet_name="b-ner") # Check for and handle missing values data = data.fillna(method='ffill') # Group the data by sentence and collect word-tag pairs agg_func = lambda s: [(w, t) for w, t in zip(s["Word"].values.tolist(), s['Tag'].values.tolist())] agg_data = data.groupby(['Sentence #']).apply(agg_func).reset_index().rename(columns={0:'Sentence_POS_Tag_Pair'}) # Define a function to preprocess the data def preprocess_data(data): data['Sentence'] = data['Sentence_POS_Tag_Pair'].apply(lambda sentence: " ".join(map(str, [s[0] for s in sentence]))) data['Tag'] = data['Sentence_POS_Tag_Pair'].apply(lambda sentence: " ".join(map(str, [s[1] for s in sentence]))) data['tokenised_sentences'] = data['Sentence'].apply(bn.word_tokenize) data['tag_list'] = data['Tag'].apply(lambda x: x.split()) return data # Preprocess the data agg_data = preprocess_data(agg_data) # Separate sentences and tags tokenized_sentences = agg_data['tokenised_sentences'].tolist() tags_list = agg_data['tag_list'].tolist() # Create word-to-index and tag-to-index mappings words = set(word for sent in tokenized_sentences for word in sent) word_to_idx = {word: i + 1 for i, word in enumerate(words)} num_words = len(words) + 1 # Add 1 for padding tags = set(tag for tag_list in tags_list for tag in tag_list) tag_to_idx = {tag: i for i, tag in enumerate(tags)} num_tags = len(tags) # Encode sentences and tags max_len = max(len(sent) for sent in tokenized_sentences) encoded_sentences = [[word_to_idx[word] for word in sent] for sent in tokenized_sentences] encoded_sentences = pad_sequences(encoded_sentences, maxlen=max_len, padding='post') encoded_tags = [[tag_to_idx[tag] for tag in tag_list] for tag_list in tags_list] encoded_tags = pad_sequences(encoded_tags, maxlen=max_len, padding='post') encoded_tags = [to_categorical(tag, num_classes=num_tags) for tag in encoded_tags] # Split data into train and test sets X_train, X_test, y_train, y_test = train_test_split(encoded_sentences, encoded_tags, test_size=0.2, random_state=42) # Define the LSTM model model_path = "best_model.h5" if os.path.exists(model_path): model = load_model(model_path) else: model = Sequential() model.add(Embedding(input_dim=num_words, output_dim=50, input_length=max_len)) model.add(Bidirectional(LSTM(units=100, return_sequences=True))) model.add(TimeDistributed(Dense(units=num_tags, activation='softmax'))) # Compile the model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Define callback to save the model when validation accuracy reaches 99% or above class SaveModelCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if logs.get('val_accuracy') >= 0.99: self.model.save("best_model.h5") print("\nValidation accuracy reached 99% or above. Model saved.") # Train the model history = model.fit(X_train, np.array(y_train), batch_size=32, epochs=7, validation_split=0.1, callbacks=[SaveModelCallback()]) # Evaluate the model loss, accuracy = model.evaluate(X_test, np.array(y_test)) print("Test Loss:", loss) print("Test Accuracy:", accuracy) # Function to predict entities in a given sentence def predict_entities(input_sentence): tokenized_input = bn.word_tokenize(input_sentence) encoded_input = [word_to_idx[word] if word in word_to_idx else 0 for word in tokenized_input] padded_input = pad_sequences([encoded_input], maxlen=max_len, padding='post') predictions = model.predict(padded_input) predicted_tags = np.argmax(predictions, axis=-1) reverse_tag_map = {v: k for k, v in tag_to_idx.items()} predicted_tags = [reverse_tag_map[idx] for idx in predicted_tags[0][:len(tokenized_input)]] tagged_sentence = [(word, tag) for word, tag in zip(tokenized_input, predicted_tags)] return tagged_sentence # Test user input user_input = input("Enter a Bengali sentence: ") predicted_tags = predict_entities(user_input) for word, tag in predicted_tags: print(f"{word}: {tag}")