--- base_model: wav2vec2-pretrained-base-hyperVQ tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: wav2vec2-base-hyperVQ-timit-fine-tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: TIMIT_ASR - NA type: timit_asr config: clean split: test args: 'Config: na, Training split: train, Eval split: test' metrics: - name: Wer type: wer value: 0.9993108676176694 --- # wav2vec2-base-hyperVQ-timit-fine-tuned This model is a fine-tuned version of [wav2vec2-pretrained-base-hyperVQ](https://huggingface.co/wav2vec2-pretrained-base-hyperVQ) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.3628 - Wer: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2725 | 10.0 | 1450 | 3.4699 | 1.0006 | | 3.1682 | 20.0 | 2900 | 3.3628 | 0.9993 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0.dev20231229+cu118 - Datasets 2.16.0 - Tokenizers 0.15.0