---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
found_in_search_area:
- true
- true
- false
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('columntransformer', ColumnTransformer(transformers=[('standardscaler', StandardScaler(),
['location_found_elevation']),
('onehotencoder', OneHotEncoder(),
['situation'])])), ('randomforestclassifier', RandomForestClassifier(class_weight={False: 1.9217032967032968,
True: 0.6758454106280193},
random_state=42))] |
| verbose | False |
| columntransformer | ColumnTransformer(transformers=[('standardscaler', StandardScaler(),
['location_found_elevation']),
('onehotencoder', OneHotEncoder(),
['situation'])]) |
| randomforestclassifier | RandomForestClassifier(class_weight={False: 1.9217032967032968,
True: 0.6758454106280193},
random_state=42) |
| columntransformer__n_jobs | |
| columntransformer__remainder | drop |
| columntransformer__sparse_threshold | 0.3 |
| columntransformer__transformer_weights | |
| columntransformer__transformers | [('standardscaler', StandardScaler(), ['location_found_elevation']), ('onehotencoder', OneHotEncoder(), ['situation'])] |
| columntransformer__verbose | False |
| columntransformer__verbose_feature_names_out | True |
| columntransformer__standardscaler | StandardScaler() |
| columntransformer__onehotencoder | OneHotEncoder() |
| columntransformer__standardscaler__copy | True |
| columntransformer__standardscaler__with_mean | True |
| columntransformer__standardscaler__with_std | True |
| columntransformer__onehotencoder__categories | auto |
| columntransformer__onehotencoder__drop | |
| columntransformer__onehotencoder__dtype |
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('standardscaler',StandardScaler(),['location_found_elevation']),('onehotencoder',OneHotEncoder(),['situation'])])),('randomforestclassifier',RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('standardscaler',StandardScaler(),['location_found_elevation']),('onehotencoder',OneHotEncoder(),['situation'])])),('randomforestclassifier',RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42))])
ColumnTransformer(transformers=[('standardscaler', StandardScaler(),['location_found_elevation']),('onehotencoder', OneHotEncoder(),['situation'])])
['location_found_elevation']
StandardScaler()
['situation']
OneHotEncoder()
RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42)