--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer model-index: - name: fine_tuned_XLMROBERTA_cs_wikann results: [] datasets: - wikiann language: - cs pipeline_tag: token-classification --- # fine_tuned_XLMROBERTA_cs_wikann This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1216 - Overall Precision: 0.8919 - Overall Recall: 0.9190 - Overall F1: 0.9053 - Overall Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3409 | 0.4 | 500 | 0.1931 | 0.7764 | 0.8465 | 0.8100 | 0.9495 | | 0.1816 | 0.8 | 1000 | 0.1427 | 0.8405 | 0.8793 | 0.8595 | 0.9576 | | 0.1401 | 1.2 | 1500 | 0.1273 | 0.8758 | 0.9068 | 0.8910 | 0.9651 | | 0.1088 | 1.6 | 2000 | 0.1392 | 0.8868 | 0.9139 | 0.9001 | 0.9662 | | 0.1027 | 2.0 | 2500 | 0.1096 | 0.8929 | 0.9233 | 0.9078 | 0.9699 | | 0.0667 | 2.4 | 3000 | 0.1267 | 0.9030 | 0.9268 | 0.9148 | 0.9699 | | 0.0601 | 2.8 | 3500 | 0.1203 | 0.9078 | 0.9326 | 0.9200 | 0.9712 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0