--- base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_Czert-B-base-cased results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8261421319796954 - name: Recall type: recall value: 0.8622516556291391 - name: F1 type: f1 value: 0.8438107582631237 - name: Accuracy type: accuracy value: 0.9410182516810759 --- # CNEC_1_1_Czert-B-base-cased This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3330 - Precision: 0.8261 - Recall: 0.8623 - F1: 0.8438 - Accuracy: 0.9410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5787 | 1.7 | 500 | 0.3008 | 0.7659 | 0.7943 | 0.7798 | 0.9262 | | 0.2266 | 3.4 | 1000 | 0.2606 | 0.8026 | 0.8437 | 0.8226 | 0.9374 | | 0.1443 | 5.1 | 1500 | 0.2565 | 0.8189 | 0.8525 | 0.8354 | 0.9407 | | 0.1004 | 6.8 | 2000 | 0.2807 | 0.8129 | 0.8539 | 0.8329 | 0.9400 | | 0.0759 | 8.5 | 2500 | 0.2989 | 0.8255 | 0.8627 | 0.8437 | 0.9411 | | 0.0563 | 10.2 | 3000 | 0.3181 | 0.8251 | 0.8578 | 0.8411 | 0.9402 | | 0.0475 | 11.9 | 3500 | 0.3279 | 0.8204 | 0.8609 | 0.8402 | 0.9404 | | 0.0378 | 13.61 | 4000 | 0.3330 | 0.8261 | 0.8623 | 0.8438 | 0.9410 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0