--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: test args: default metrics: - name: Precision type: precision value: 0.8325581395348837 - name: Recall type: recall value: 0.8824979457682827 - name: F1 type: f1 value: 0.8568009573195053 - name: Accuracy type: accuracy value: 0.965938712854081 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 - Precision: 0.8326 - Recall: 0.8825 - F1: 0.8568 - Accuracy: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5321 | 2.22 | 500 | 0.1641 | 0.7159 | 0.8065 | 0.7585 | 0.9566 | | 0.1512 | 4.44 | 1000 | 0.1831 | 0.7886 | 0.8611 | 0.8233 | 0.9591 | | 0.0967 | 6.67 | 1500 | 0.1866 | 0.7628 | 0.8628 | 0.8097 | 0.9596 | | 0.0637 | 8.89 | 2000 | 0.1586 | 0.8054 | 0.8841 | 0.8429 | 0.9648 | | 0.0422 | 11.11 | 2500 | 0.1777 | 0.8294 | 0.8648 | 0.8467 | 0.9654 | | 0.0292 | 13.33 | 3000 | 0.1992 | 0.8326 | 0.8825 | 0.8568 | 0.9659 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0