--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8375401560348784 - name: Recall type: recall value: 0.8807915057915058 - name: F1 type: f1 value: 0.8586215008233357 - name: Accuracy type: accuracy value: 0.9697233087063596 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1726 - Precision: 0.8375 - Recall: 0.8808 - F1: 0.8586 - Accuracy: 0.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6046 | 1.11 | 500 | 0.1815 | 0.6422 | 0.7693 | 0.7000 | 0.9498 | | 0.1671 | 2.22 | 1000 | 0.1389 | 0.7436 | 0.8456 | 0.7913 | 0.9620 | | 0.1141 | 3.33 | 1500 | 0.1455 | 0.7949 | 0.8813 | 0.8359 | 0.9686 | | 0.0854 | 4.44 | 2000 | 0.1455 | 0.8012 | 0.8678 | 0.8332 | 0.9684 | | 0.0716 | 5.56 | 2500 | 0.1418 | 0.7996 | 0.8663 | 0.8316 | 0.9682 | | 0.0506 | 6.67 | 3000 | 0.1570 | 0.8138 | 0.8793 | 0.8453 | 0.9690 | | 0.0399 | 7.78 | 3500 | 0.1701 | 0.8363 | 0.8803 | 0.8577 | 0.9689 | | 0.0324 | 8.89 | 4000 | 0.1720 | 0.8313 | 0.8798 | 0.8549 | 0.9691 | | 0.0265 | 10.0 | 4500 | 0.1726 | 0.8375 | 0.8808 | 0.8586 | 0.9697 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0