--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8314350797266514 - name: Recall type: recall value: 0.8807915057915058 - name: F1 type: f1 value: 0.8554019217248652 - name: Accuracy type: accuracy value: 0.970911198029842 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1616 - Precision: 0.8314 - Recall: 0.8808 - F1: 0.8554 - Accuracy: 0.9709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3363 | 1.11 | 500 | 0.1563 | 0.7344 | 0.8234 | 0.7763 | 0.9607 | | 0.1372 | 2.22 | 1000 | 0.1308 | 0.7641 | 0.8692 | 0.8133 | 0.9652 | | 0.0998 | 3.33 | 1500 | 0.1368 | 0.7912 | 0.8668 | 0.8273 | 0.9671 | | 0.077 | 4.44 | 2000 | 0.1360 | 0.8079 | 0.8707 | 0.8381 | 0.9690 | | 0.0623 | 5.56 | 2500 | 0.1421 | 0.8181 | 0.8707 | 0.8436 | 0.9686 | | 0.0458 | 6.67 | 3000 | 0.1488 | 0.8129 | 0.8764 | 0.8435 | 0.9706 | | 0.0382 | 7.78 | 3500 | 0.1585 | 0.8320 | 0.8745 | 0.8527 | 0.9693 | | 0.0299 | 8.89 | 4000 | 0.1585 | 0.8291 | 0.8755 | 0.8516 | 0.9705 | | 0.0257 | 10.0 | 4500 | 0.1616 | 0.8314 | 0.8808 | 0.8554 | 0.9709 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0