--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8425832492431887 - name: Recall type: recall value: 0.8925708177445216 - name: F1 type: f1 value: 0.8668569945497016 - name: Accuracy type: accuracy value: 0.968847721964929 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1815 - Precision: 0.8426 - Recall: 0.8926 - F1: 0.8669 - Accuracy: 0.9688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3568 | 0.86 | 500 | 0.1652 | 0.7278 | 0.8290 | 0.7751 | 0.9578 | | 0.175 | 1.72 | 1000 | 0.1474 | 0.7862 | 0.8530 | 0.8183 | 0.9662 | | 0.1225 | 2.58 | 1500 | 0.1417 | 0.8013 | 0.8642 | 0.8316 | 0.9650 | | 0.0994 | 3.44 | 2000 | 0.1673 | 0.8095 | 0.8744 | 0.8407 | 0.9654 | | 0.0781 | 4.3 | 2500 | 0.1568 | 0.8383 | 0.8808 | 0.8590 | 0.9686 | | 0.0638 | 5.16 | 3000 | 0.1653 | 0.8272 | 0.8851 | 0.8552 | 0.9683 | | 0.0521 | 6.02 | 3500 | 0.1680 | 0.8419 | 0.8995 | 0.8698 | 0.9695 | | 0.0394 | 6.88 | 4000 | 0.1761 | 0.8374 | 0.8920 | 0.8639 | 0.9685 | | 0.0326 | 7.75 | 4500 | 0.1815 | 0.8426 | 0.8926 | 0.8669 | 0.9688 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0