--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8551829268292683 - name: Recall type: recall value: 0.8995189738107964 - name: F1 type: f1 value: 0.8767908309455589 - name: Accuracy type: accuracy value: 0.9694414756758897 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2115 - Precision: 0.8552 - Recall: 0.8995 - F1: 0.8768 - Accuracy: 0.9694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2948 | 1.72 | 500 | 0.1385 | 0.7752 | 0.8589 | 0.8149 | 0.9620 | | 0.1185 | 3.44 | 1000 | 0.1411 | 0.8063 | 0.8808 | 0.8419 | 0.9692 | | 0.0762 | 5.15 | 1500 | 0.1485 | 0.8252 | 0.8781 | 0.8509 | 0.9690 | | 0.054 | 6.87 | 2000 | 0.1586 | 0.8368 | 0.8878 | 0.8615 | 0.9697 | | 0.0357 | 8.59 | 2500 | 0.1774 | 0.8364 | 0.8990 | 0.8666 | 0.9705 | | 0.026 | 10.31 | 3000 | 0.1869 | 0.8540 | 0.8974 | 0.8752 | 0.9700 | | 0.0189 | 12.03 | 3500 | 0.2040 | 0.8555 | 0.8958 | 0.8752 | 0.9698 | | 0.013 | 13.75 | 4000 | 0.2115 | 0.8552 | 0.8995 | 0.8768 | 0.9694 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0