|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC1_1_extended_xlm-roberta-large |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8551829268292683 |
|
- name: Recall |
|
type: recall |
|
value: 0.8995189738107964 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8767908309455589 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9694414756758897 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC1_1_extended_xlm-roberta-large |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2115 |
|
- Precision: 0.8552 |
|
- Recall: 0.8995 |
|
- F1: 0.8768 |
|
- Accuracy: 0.9694 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2948 | 1.72 | 500 | 0.1385 | 0.7752 | 0.8589 | 0.8149 | 0.9620 | |
|
| 0.1185 | 3.44 | 1000 | 0.1411 | 0.8063 | 0.8808 | 0.8419 | 0.9692 | |
|
| 0.0762 | 5.15 | 1500 | 0.1485 | 0.8252 | 0.8781 | 0.8509 | 0.9690 | |
|
| 0.054 | 6.87 | 2000 | 0.1586 | 0.8368 | 0.8878 | 0.8615 | 0.9697 | |
|
| 0.0357 | 8.59 | 2500 | 0.1774 | 0.8364 | 0.8990 | 0.8666 | 0.9705 | |
|
| 0.026 | 10.31 | 3000 | 0.1869 | 0.8540 | 0.8974 | 0.8752 | 0.9700 | |
|
| 0.0189 | 12.03 | 3500 | 0.2040 | 0.8555 | 0.8958 | 0.8752 | 0.9698 | |
|
| 0.013 | 13.75 | 4000 | 0.2115 | 0.8552 | 0.8995 | 0.8768 | 0.9694 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|