---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: isafpr-tiny-llama-lora-templatefree
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
# I'm training on 4090 GPUs
# so I'm using 4-bit precision to save on memory
load_in_4bit: true
strict: false
data_seed: 42
seed: 42
datasets:
- path: data/templatefree_isaf_press_releases_ft_train.jsonl
type: input_output
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./outputs/tiny-llama/lora-out-templatefree
hub_model_id: strickvl/isafpr-tiny-llama-lora-templatefree
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
```
# isafpr-tiny-llama-lora-templatefree
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8835 | 0.0274 | 1 | 1.8815 |
| 1.2729 | 0.2466 | 9 | 1.1212 |
| 0.2733 | 0.4932 | 18 | 0.2187 |
| 0.1129 | 0.7397 | 27 | 0.0996 |
| 0.0789 | 0.9863 | 36 | 0.0808 |
| 0.0725 | 1.2123 | 45 | 0.0705 |
| 0.0727 | 1.4589 | 54 | 0.0653 |
| 0.0536 | 1.7055 | 63 | 0.0609 |
| 0.0644 | 1.9521 | 72 | 0.0577 |
| 0.0536 | 2.1781 | 81 | 0.0554 |
| 0.0464 | 2.4247 | 90 | 0.0538 |
| 0.054 | 2.6712 | 99 | 0.0522 |
| 0.0512 | 2.9178 | 108 | 0.0511 |
| 0.0463 | 3.1438 | 117 | 0.0508 |
| 0.0523 | 3.3904 | 126 | 0.0505 |
| 0.0473 | 3.6370 | 135 | 0.0504 |
| 0.0459 | 3.8836 | 144 | 0.0504 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1