--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: isafpr-tiny-llama-lora-templatefree results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false # I'm training on 4090 GPUs # so I'm using 4-bit precision to save on memory load_in_4bit: true strict: false data_seed: 42 seed: 42 datasets: - path: data/templatefree_isaf_press_releases_ft_train.jsonl type: input_output dataset_prepared_path: val_set_size: 0.1 output_dir: ./outputs/tiny-llama/lora-out-templatefree hub_model_id: strickvl/isafpr-tiny-llama-lora-templatefree sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: isaf_pr_ft wandb_entity: strickvl wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" ```

# isafpr-tiny-llama-lora-templatefree This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8835 | 0.0274 | 1 | 1.8815 | | 1.2729 | 0.2466 | 9 | 1.1212 | | 0.2733 | 0.4932 | 18 | 0.2187 | | 0.1129 | 0.7397 | 27 | 0.0996 | | 0.0789 | 0.9863 | 36 | 0.0808 | | 0.0725 | 1.2123 | 45 | 0.0705 | | 0.0727 | 1.4589 | 54 | 0.0653 | | 0.0536 | 1.7055 | 63 | 0.0609 | | 0.0644 | 1.9521 | 72 | 0.0577 | | 0.0536 | 2.1781 | 81 | 0.0554 | | 0.0464 | 2.4247 | 90 | 0.0538 | | 0.054 | 2.6712 | 99 | 0.0522 | | 0.0512 | 2.9178 | 108 | 0.0511 | | 0.0463 | 3.1438 | 117 | 0.0508 | | 0.0523 | 3.3904 | 126 | 0.0505 | | 0.0473 | 3.6370 | 135 | 0.0504 | | 0.0459 | 3.8836 | 144 | 0.0504 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1