---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: isafpr-mistral-lora-templatefree
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
data_seed: 42
seed: 42
datasets:
- path: data/templatefree_isaf_press_releases_ft_train.jsonl
type: input_output
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./outputs/mistral/lora-out-templatefree
hub_model_id: strickvl/isafpr-mistral-lora-templatefree
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
```
# isafpr-mistral-lora-templatefree
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4053 | 0.0276 | 1 | 1.4080 |
| 0.1866 | 0.2483 | 9 | 0.1346 |
| 0.0544 | 0.4966 | 18 | 0.0551 |
| 0.0516 | 0.7448 | 27 | 0.0442 |
| 0.0387 | 0.9931 | 36 | 0.0400 |
| 0.0354 | 1.2138 | 45 | 0.0367 |
| 0.0396 | 1.4621 | 54 | 0.0352 |
| 0.0282 | 1.7103 | 63 | 0.0341 |
| 0.0335 | 1.9586 | 72 | 0.0333 |
| 0.0257 | 2.1793 | 81 | 0.0317 |
| 0.0206 | 2.4276 | 90 | 0.0313 |
| 0.0259 | 2.6759 | 99 | 0.0312 |
| 0.024 | 2.9241 | 108 | 0.0301 |
| 0.0219 | 3.1517 | 117 | 0.0300 |
| 0.0221 | 3.4 | 126 | 0.0298 |
| 0.0225 | 3.6483 | 135 | 0.0297 |
| 0.0208 | 3.8966 | 144 | 0.0297 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1