--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: isafpr-mistral-lora-templatefree results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false data_seed: 42 seed: 42 datasets: - path: data/templatefree_isaf_press_releases_ft_train.jsonl type: input_output dataset_prepared_path: val_set_size: 0.1 output_dir: ./outputs/mistral/lora-out-templatefree hub_model_id: strickvl/isafpr-mistral-lora-templatefree sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: isaf_pr_ft wandb_entity: strickvl wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" ```

# isafpr-mistral-lora-templatefree This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4053 | 0.0276 | 1 | 1.4080 | | 0.1866 | 0.2483 | 9 | 0.1346 | | 0.0544 | 0.4966 | 18 | 0.0551 | | 0.0516 | 0.7448 | 27 | 0.0442 | | 0.0387 | 0.9931 | 36 | 0.0400 | | 0.0354 | 1.2138 | 45 | 0.0367 | | 0.0396 | 1.4621 | 54 | 0.0352 | | 0.0282 | 1.7103 | 63 | 0.0341 | | 0.0335 | 1.9586 | 72 | 0.0333 | | 0.0257 | 2.1793 | 81 | 0.0317 | | 0.0206 | 2.4276 | 90 | 0.0313 | | 0.0259 | 2.6759 | 99 | 0.0312 | | 0.024 | 2.9241 | 108 | 0.0301 | | 0.0219 | 3.1517 | 117 | 0.0300 | | 0.0221 | 3.4 | 126 | 0.0298 | | 0.0225 | 3.6483 | 135 | 0.0297 | | 0.0208 | 3.8966 | 144 | 0.0297 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1