---
license: gemma
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: google/gemma-2b
model-index:
- name: isafpr-gemma-qlora-templatefree
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
# use google/gemma-7b if you have access
base_model: google/gemma-2b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: data/templatefree_isaf_press_releases_ft_train.jsonl
type: input_output
val_set_size: 0.1
output_dir: ./outputs/gemma/qlora-out-templatefree
hub_model_id: strickvl/isafpr-gemma-qlora-templatefree
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
- embed_tokens
- lm_head
sequence_len: 1024
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
```
# isafpr-gemma-qlora-templatefree
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0379
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 3
- total_train_batch_size: 12
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3995 | 0.0054 | 1 | 2.3804 |
| 0.1051 | 0.2527 | 47 | 0.0906 |
| 0.0444 | 0.5054 | 94 | 0.0617 |
| 0.0292 | 0.7581 | 141 | 0.0490 |
| 0.1049 | 1.0108 | 188 | 0.0475 |
| 0.03 | 1.2419 | 235 | 0.0435 |
| 0.0219 | 1.4946 | 282 | 0.0411 |
| 0.0286 | 1.7473 | 329 | 0.0413 |
| 0.0403 | 2.0 | 376 | 0.0383 |
| 0.0274 | 2.2330 | 423 | 0.0386 |
| 0.0178 | 2.4857 | 470 | 0.0384 |
| 0.0272 | 2.7384 | 517 | 0.0378 |
| 0.0409 | 2.9910 | 564 | 0.0371 |
| 0.013 | 3.2240 | 611 | 0.0378 |
| 0.0177 | 3.4767 | 658 | 0.0380 |
| 0.018 | 3.7294 | 705 | 0.0379 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1