metadata
language:
- te
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: whisper-small-telugu
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: te_in
split: test
metrics:
- type: wer
value: 39.67740444608772
name: Wer
whisper-small-telugu
This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set (google/flerus telugu test set):
- Loss: 0.3622
- Wer: 39.6774
openai/whisper-small has the following zero shot performance on google/fleurs test set:
- Wer: 117.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2623 | 1.55 | 500 | 0.2733 | 65.9750 |
0.0859 | 3.1 | 1000 | 0.2045 | 39.7652 |
0.0538 | 4.64 | 1500 | 0.2220 | 42.3811 |
0.0265 | 6.19 | 2000 | 0.2526 | 42.3626 |
0.0179 | 7.74 | 2500 | 0.2754 | 42.1685 |
0.008 | 9.29 | 3000 | 0.2966 | 41.2257 |
0.0061 | 10.83 | 3500 | 0.2950 | 40.6202 |
0.0034 | 12.38 | 4000 | 0.3049 | 40.3198 |
0.004 | 13.93 | 4500 | 0.3106 | 40.5879 |
0.0018 | 15.48 | 5000 | 0.3199 | 40.1812 |
0.0016 | 17.03 | 5500 | 0.3346 | 39.8345 |
0.0006 | 18.57 | 6000 | 0.3337 | 40.2274 |
0.0003 | 20.12 | 6500 | 0.3396 | 40.2597 |
0.0005 | 21.67 | 7000 | 0.3465 | 40.1072 |
0.0002 | 23.22 | 7500 | 0.3485 | 39.7282 |
0.0002 | 24.77 | 8000 | 0.3519 | 39.7837 |
0.0001 | 26.32 | 8500 | 0.3567 | 39.7560 |
0.0001 | 27.86 | 9000 | 0.3614 | 39.8068 |
0.0 | 29.41 | 9500 | 0.3609 | 39.4925 |
0.0 | 30.96 | 10000 | 0.3622 | 39.6774 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2