2023-10-25 10:42:24,196 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(64001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (1): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (2): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (3): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (4): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (5): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (6): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (7): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (8): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (9): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (10): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (11): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Train: 14465 sentences 2023-10-25 10:42:24,197 (train_with_dev=False, train_with_test=False) 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Training Params: 2023-10-25 10:42:24,197 - learning_rate: "5e-05" 2023-10-25 10:42:24,197 - mini_batch_size: "8" 2023-10-25 10:42:24,197 - max_epochs: "10" 2023-10-25 10:42:24,197 - shuffle: "True" 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Plugins: 2023-10-25 10:42:24,197 - TensorboardLogger 2023-10-25 10:42:24,197 - LinearScheduler | warmup_fraction: '0.1' 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Final evaluation on model from best epoch (best-model.pt) 2023-10-25 10:42:24,197 - metric: "('micro avg', 'f1-score')" 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Computation: 2023-10-25 10:42:24,197 - compute on device: cuda:0 2023-10-25 10:42:24,197 - embedding storage: none 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,197 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:42:24,198 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-25 10:42:39,798 epoch 1 - iter 180/1809 - loss 1.08864236 - time (sec): 15.60 - samples/sec: 2462.39 - lr: 0.000005 - momentum: 0.000000 2023-10-25 10:42:55,362 epoch 1 - iter 360/1809 - loss 0.63737072 - time (sec): 31.16 - samples/sec: 2435.51 - lr: 0.000010 - momentum: 0.000000 2023-10-25 10:43:11,204 epoch 1 - iter 540/1809 - loss 0.47500323 - time (sec): 47.01 - samples/sec: 2422.29 - lr: 0.000015 - momentum: 0.000000 2023-10-25 10:43:26,982 epoch 1 - iter 720/1809 - loss 0.38842572 - time (sec): 62.78 - samples/sec: 2405.92 - lr: 0.000020 - momentum: 0.000000 2023-10-25 10:43:42,388 epoch 1 - iter 900/1809 - loss 0.33612833 - time (sec): 78.19 - samples/sec: 2392.53 - lr: 0.000025 - momentum: 0.000000 2023-10-25 10:43:58,152 epoch 1 - iter 1080/1809 - loss 0.29705344 - time (sec): 93.95 - samples/sec: 2390.75 - lr: 0.000030 - momentum: 0.000000 2023-10-25 10:44:14,538 epoch 1 - iter 1260/1809 - loss 0.26939451 - time (sec): 110.34 - samples/sec: 2392.79 - lr: 0.000035 - momentum: 0.000000 2023-10-25 10:44:30,974 epoch 1 - iter 1440/1809 - loss 0.24905179 - time (sec): 126.78 - samples/sec: 2389.57 - lr: 0.000040 - momentum: 0.000000 2023-10-25 10:44:46,901 epoch 1 - iter 1620/1809 - loss 0.23268593 - time (sec): 142.70 - samples/sec: 2385.14 - lr: 0.000045 - momentum: 0.000000 2023-10-25 10:45:02,841 epoch 1 - iter 1800/1809 - loss 0.21934057 - time (sec): 158.64 - samples/sec: 2384.02 - lr: 0.000050 - momentum: 0.000000 2023-10-25 10:45:03,516 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:45:03,517 EPOCH 1 done: loss 0.2188 - lr: 0.000050 2023-10-25 10:45:08,070 DEV : loss 0.12551043927669525 - f1-score (micro avg) 0.595 2023-10-25 10:45:08,092 saving best model 2023-10-25 10:45:08,652 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:45:24,334 epoch 2 - iter 180/1809 - loss 0.09357098 - time (sec): 15.68 - samples/sec: 2407.94 - lr: 0.000049 - momentum: 0.000000 2023-10-25 10:45:40,596 epoch 2 - iter 360/1809 - loss 0.09016993 - time (sec): 31.94 - samples/sec: 2403.78 - lr: 0.000049 - momentum: 0.000000 2023-10-25 10:45:56,781 epoch 2 - iter 540/1809 - loss 0.09172432 - time (sec): 48.13 - samples/sec: 2396.27 - lr: 0.000048 - momentum: 0.000000 2023-10-25 10:46:12,794 epoch 2 - iter 720/1809 - loss 0.09158145 - time (sec): 64.14 - samples/sec: 2398.33 - lr: 0.000048 - momentum: 0.000000 2023-10-25 10:46:28,593 epoch 2 - iter 900/1809 - loss 0.09251771 - time (sec): 79.94 - samples/sec: 2389.54 - lr: 0.000047 - momentum: 0.000000 2023-10-25 10:46:44,259 epoch 2 - iter 1080/1809 - loss 0.09131020 - time (sec): 95.61 - samples/sec: 2395.09 - lr: 0.000047 - momentum: 0.000000 2023-10-25 10:46:59,923 epoch 2 - iter 1260/1809 - loss 0.09065843 - time (sec): 111.27 - samples/sec: 2387.06 - lr: 0.000046 - momentum: 0.000000 2023-10-25 10:47:15,682 epoch 2 - iter 1440/1809 - loss 0.09009273 - time (sec): 127.03 - samples/sec: 2386.49 - lr: 0.000046 - momentum: 0.000000 2023-10-25 10:47:31,440 epoch 2 - iter 1620/1809 - loss 0.08870597 - time (sec): 142.79 - samples/sec: 2389.70 - lr: 0.000045 - momentum: 0.000000 2023-10-25 10:47:47,438 epoch 2 - iter 1800/1809 - loss 0.08734034 - time (sec): 158.79 - samples/sec: 2380.41 - lr: 0.000044 - momentum: 0.000000 2023-10-25 10:47:48,319 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:47:48,320 EPOCH 2 done: loss 0.0871 - lr: 0.000044 2023-10-25 10:47:53,589 DEV : loss 0.12736038863658905 - f1-score (micro avg) 0.6164 2023-10-25 10:47:53,611 saving best model 2023-10-25 10:47:54,320 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:48:10,502 epoch 3 - iter 180/1809 - loss 0.07791949 - time (sec): 16.18 - samples/sec: 2440.64 - lr: 0.000044 - momentum: 0.000000 2023-10-25 10:48:26,551 epoch 3 - iter 360/1809 - loss 0.07255591 - time (sec): 32.23 - samples/sec: 2434.36 - lr: 0.000043 - momentum: 0.000000 2023-10-25 10:48:42,860 epoch 3 - iter 540/1809 - loss 0.07280647 - time (sec): 48.54 - samples/sec: 2416.45 - lr: 0.000043 - momentum: 0.000000 2023-10-25 10:48:58,313 epoch 3 - iter 720/1809 - loss 0.06999820 - time (sec): 63.99 - samples/sec: 2405.21 - lr: 0.000042 - momentum: 0.000000 2023-10-25 10:49:14,210 epoch 3 - iter 900/1809 - loss 0.06882067 - time (sec): 79.89 - samples/sec: 2398.64 - lr: 0.000042 - momentum: 0.000000 2023-10-25 10:49:29,782 epoch 3 - iter 1080/1809 - loss 0.06780427 - time (sec): 95.46 - samples/sec: 2391.39 - lr: 0.000041 - momentum: 0.000000 2023-10-25 10:49:45,430 epoch 3 - iter 1260/1809 - loss 0.06627869 - time (sec): 111.11 - samples/sec: 2384.04 - lr: 0.000041 - momentum: 0.000000 2023-10-25 10:50:01,822 epoch 3 - iter 1440/1809 - loss 0.06607504 - time (sec): 127.50 - samples/sec: 2375.41 - lr: 0.000040 - momentum: 0.000000 2023-10-25 10:50:17,479 epoch 3 - iter 1620/1809 - loss 0.06532994 - time (sec): 143.16 - samples/sec: 2381.32 - lr: 0.000039 - momentum: 0.000000 2023-10-25 10:50:33,050 epoch 3 - iter 1800/1809 - loss 0.06483682 - time (sec): 158.73 - samples/sec: 2383.21 - lr: 0.000039 - momentum: 0.000000 2023-10-25 10:50:33,799 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:50:33,799 EPOCH 3 done: loss 0.0649 - lr: 0.000039 2023-10-25 10:50:38,557 DEV : loss 0.13015878200531006 - f1-score (micro avg) 0.6083 2023-10-25 10:50:38,579 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:50:54,622 epoch 4 - iter 180/1809 - loss 0.04109198 - time (sec): 16.04 - samples/sec: 2401.20 - lr: 0.000038 - momentum: 0.000000 2023-10-25 10:51:10,400 epoch 4 - iter 360/1809 - loss 0.04019791 - time (sec): 31.82 - samples/sec: 2393.98 - lr: 0.000038 - momentum: 0.000000 2023-10-25 10:51:26,181 epoch 4 - iter 540/1809 - loss 0.04111006 - time (sec): 47.60 - samples/sec: 2401.38 - lr: 0.000037 - momentum: 0.000000 2023-10-25 10:51:41,964 epoch 4 - iter 720/1809 - loss 0.04191859 - time (sec): 63.38 - samples/sec: 2379.87 - lr: 0.000037 - momentum: 0.000000 2023-10-25 10:51:57,954 epoch 4 - iter 900/1809 - loss 0.04474768 - time (sec): 79.37 - samples/sec: 2381.93 - lr: 0.000036 - momentum: 0.000000 2023-10-25 10:52:13,744 epoch 4 - iter 1080/1809 - loss 0.04597864 - time (sec): 95.16 - samples/sec: 2371.18 - lr: 0.000036 - momentum: 0.000000 2023-10-25 10:52:29,289 epoch 4 - iter 1260/1809 - loss 0.04532760 - time (sec): 110.71 - samples/sec: 2374.95 - lr: 0.000035 - momentum: 0.000000 2023-10-25 10:52:45,599 epoch 4 - iter 1440/1809 - loss 0.04474968 - time (sec): 127.02 - samples/sec: 2360.69 - lr: 0.000034 - momentum: 0.000000 2023-10-25 10:53:01,795 epoch 4 - iter 1620/1809 - loss 0.04456366 - time (sec): 143.21 - samples/sec: 2366.29 - lr: 0.000034 - momentum: 0.000000 2023-10-25 10:53:17,695 epoch 4 - iter 1800/1809 - loss 0.04497375 - time (sec): 159.11 - samples/sec: 2376.49 - lr: 0.000033 - momentum: 0.000000 2023-10-25 10:53:18,468 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:53:18,469 EPOCH 4 done: loss 0.0450 - lr: 0.000033 2023-10-25 10:53:23,224 DEV : loss 0.23449285328388214 - f1-score (micro avg) 0.5643 2023-10-25 10:53:23,246 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:53:39,283 epoch 5 - iter 180/1809 - loss 0.11798032 - time (sec): 16.04 - samples/sec: 2458.47 - lr: 0.000033 - momentum: 0.000000 2023-10-25 10:53:55,130 epoch 5 - iter 360/1809 - loss 0.09384126 - time (sec): 31.88 - samples/sec: 2408.73 - lr: 0.000032 - momentum: 0.000000 2023-10-25 10:54:10,990 epoch 5 - iter 540/1809 - loss 0.07744584 - time (sec): 47.74 - samples/sec: 2388.60 - lr: 0.000032 - momentum: 0.000000 2023-10-25 10:54:26,505 epoch 5 - iter 720/1809 - loss 0.08471679 - time (sec): 63.26 - samples/sec: 2396.43 - lr: 0.000031 - momentum: 0.000000 2023-10-25 10:54:42,213 epoch 5 - iter 900/1809 - loss 0.09678449 - time (sec): 78.97 - samples/sec: 2398.43 - lr: 0.000031 - momentum: 0.000000 2023-10-25 10:54:58,597 epoch 5 - iter 1080/1809 - loss 0.09685579 - time (sec): 95.35 - samples/sec: 2396.32 - lr: 0.000030 - momentum: 0.000000 2023-10-25 10:55:14,316 epoch 5 - iter 1260/1809 - loss 0.09900587 - time (sec): 111.07 - samples/sec: 2388.46 - lr: 0.000029 - momentum: 0.000000 2023-10-25 10:55:30,081 epoch 5 - iter 1440/1809 - loss 0.10576125 - time (sec): 126.83 - samples/sec: 2388.49 - lr: 0.000029 - momentum: 0.000000 2023-10-25 10:55:45,766 epoch 5 - iter 1620/1809 - loss 0.11334555 - time (sec): 142.52 - samples/sec: 2382.86 - lr: 0.000028 - momentum: 0.000000 2023-10-25 10:56:01,695 epoch 5 - iter 1800/1809 - loss 0.11935313 - time (sec): 158.45 - samples/sec: 2386.46 - lr: 0.000028 - momentum: 0.000000 2023-10-25 10:56:02,462 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:56:02,462 EPOCH 5 done: loss 0.1197 - lr: 0.000028 2023-10-25 10:56:07,710 DEV : loss 0.22438712418079376 - f1-score (micro avg) 0.3385 2023-10-25 10:56:07,732 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:56:23,701 epoch 6 - iter 180/1809 - loss 0.13593977 - time (sec): 15.97 - samples/sec: 2374.30 - lr: 0.000027 - momentum: 0.000000 2023-10-25 10:56:39,782 epoch 6 - iter 360/1809 - loss 0.11374633 - time (sec): 32.05 - samples/sec: 2397.55 - lr: 0.000027 - momentum: 0.000000 2023-10-25 10:56:55,834 epoch 6 - iter 540/1809 - loss 0.10944967 - time (sec): 48.10 - samples/sec: 2399.11 - lr: 0.000026 - momentum: 0.000000 2023-10-25 10:57:11,763 epoch 6 - iter 720/1809 - loss 0.13307279 - time (sec): 64.03 - samples/sec: 2395.36 - lr: 0.000026 - momentum: 0.000000 2023-10-25 10:57:27,269 epoch 6 - iter 900/1809 - loss 0.14472156 - time (sec): 79.54 - samples/sec: 2392.63 - lr: 0.000025 - momentum: 0.000000 2023-10-25 10:57:43,006 epoch 6 - iter 1080/1809 - loss 0.14546492 - time (sec): 95.27 - samples/sec: 2388.10 - lr: 0.000024 - momentum: 0.000000 2023-10-25 10:57:58,783 epoch 6 - iter 1260/1809 - loss 0.14276182 - time (sec): 111.05 - samples/sec: 2382.48 - lr: 0.000024 - momentum: 0.000000 2023-10-25 10:58:14,861 epoch 6 - iter 1440/1809 - loss 0.13027593 - time (sec): 127.13 - samples/sec: 2387.70 - lr: 0.000023 - momentum: 0.000000 2023-10-25 10:58:30,584 epoch 6 - iter 1620/1809 - loss 0.12180313 - time (sec): 142.85 - samples/sec: 2386.56 - lr: 0.000023 - momentum: 0.000000 2023-10-25 10:58:46,528 epoch 6 - iter 1800/1809 - loss 0.11629211 - time (sec): 158.80 - samples/sec: 2381.42 - lr: 0.000022 - momentum: 0.000000 2023-10-25 10:58:47,311 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:58:47,312 EPOCH 6 done: loss 0.1159 - lr: 0.000022 2023-10-25 10:58:52,577 DEV : loss 0.23836202919483185 - f1-score (micro avg) 0.5285 2023-10-25 10:58:52,599 ---------------------------------------------------------------------------------------------------- 2023-10-25 10:59:08,273 epoch 7 - iter 180/1809 - loss 0.05953192 - time (sec): 15.67 - samples/sec: 2390.84 - lr: 0.000022 - momentum: 0.000000 2023-10-25 10:59:24,137 epoch 7 - iter 360/1809 - loss 0.06041906 - time (sec): 31.54 - samples/sec: 2347.48 - lr: 0.000021 - momentum: 0.000000 2023-10-25 10:59:40,181 epoch 7 - iter 540/1809 - loss 0.06633058 - time (sec): 47.58 - samples/sec: 2329.88 - lr: 0.000021 - momentum: 0.000000 2023-10-25 10:59:55,826 epoch 7 - iter 720/1809 - loss 0.06758924 - time (sec): 63.23 - samples/sec: 2345.81 - lr: 0.000020 - momentum: 0.000000 2023-10-25 11:00:12,024 epoch 7 - iter 900/1809 - loss 0.06923090 - time (sec): 79.42 - samples/sec: 2348.03 - lr: 0.000019 - momentum: 0.000000 2023-10-25 11:00:27,650 epoch 7 - iter 1080/1809 - loss 0.06847767 - time (sec): 95.05 - samples/sec: 2350.34 - lr: 0.000019 - momentum: 0.000000 2023-10-25 11:00:43,756 epoch 7 - iter 1260/1809 - loss 0.06519470 - time (sec): 111.16 - samples/sec: 2354.86 - lr: 0.000018 - momentum: 0.000000 2023-10-25 11:01:00,077 epoch 7 - iter 1440/1809 - loss 0.06291968 - time (sec): 127.48 - samples/sec: 2362.89 - lr: 0.000018 - momentum: 0.000000 2023-10-25 11:01:15,563 epoch 7 - iter 1620/1809 - loss 0.06280369 - time (sec): 142.96 - samples/sec: 2372.87 - lr: 0.000017 - momentum: 0.000000 2023-10-25 11:01:31,725 epoch 7 - iter 1800/1809 - loss 0.06011227 - time (sec): 159.12 - samples/sec: 2377.28 - lr: 0.000017 - momentum: 0.000000 2023-10-25 11:01:32,510 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:01:32,510 EPOCH 7 done: loss 0.0601 - lr: 0.000017 2023-10-25 11:01:37,792 DEV : loss 0.25131794810295105 - f1-score (micro avg) 0.5408 2023-10-25 11:01:37,814 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:01:53,779 epoch 8 - iter 180/1809 - loss 0.01859667 - time (sec): 15.96 - samples/sec: 2421.30 - lr: 0.000016 - momentum: 0.000000 2023-10-25 11:02:09,497 epoch 8 - iter 360/1809 - loss 0.02439411 - time (sec): 31.68 - samples/sec: 2406.52 - lr: 0.000016 - momentum: 0.000000 2023-10-25 11:02:25,696 epoch 8 - iter 540/1809 - loss 0.02666204 - time (sec): 47.88 - samples/sec: 2383.15 - lr: 0.000015 - momentum: 0.000000 2023-10-25 11:02:41,394 epoch 8 - iter 720/1809 - loss 0.03108643 - time (sec): 63.58 - samples/sec: 2379.68 - lr: 0.000014 - momentum: 0.000000 2023-10-25 11:02:57,230 epoch 8 - iter 900/1809 - loss 0.03146788 - time (sec): 79.42 - samples/sec: 2379.80 - lr: 0.000014 - momentum: 0.000000 2023-10-25 11:03:13,381 epoch 8 - iter 1080/1809 - loss 0.03266776 - time (sec): 95.57 - samples/sec: 2388.45 - lr: 0.000013 - momentum: 0.000000 2023-10-25 11:03:29,042 epoch 8 - iter 1260/1809 - loss 0.03363994 - time (sec): 111.23 - samples/sec: 2391.56 - lr: 0.000013 - momentum: 0.000000 2023-10-25 11:03:44,858 epoch 8 - iter 1440/1809 - loss 0.03353747 - time (sec): 127.04 - samples/sec: 2394.81 - lr: 0.000012 - momentum: 0.000000 2023-10-25 11:04:00,459 epoch 8 - iter 1620/1809 - loss 0.03451516 - time (sec): 142.64 - samples/sec: 2393.65 - lr: 0.000012 - momentum: 0.000000 2023-10-25 11:04:16,154 epoch 8 - iter 1800/1809 - loss 0.03533870 - time (sec): 158.34 - samples/sec: 2387.59 - lr: 0.000011 - momentum: 0.000000 2023-10-25 11:04:16,985 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:04:16,986 EPOCH 8 done: loss 0.0353 - lr: 0.000011 2023-10-25 11:04:22,282 DEV : loss 0.2803691029548645 - f1-score (micro avg) 0.5162 2023-10-25 11:04:22,304 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:04:38,035 epoch 9 - iter 180/1809 - loss 0.04227779 - time (sec): 15.73 - samples/sec: 2359.95 - lr: 0.000011 - momentum: 0.000000 2023-10-25 11:04:53,886 epoch 9 - iter 360/1809 - loss 0.03812442 - time (sec): 31.58 - samples/sec: 2363.59 - lr: 0.000010 - momentum: 0.000000 2023-10-25 11:05:09,537 epoch 9 - iter 540/1809 - loss 0.03623853 - time (sec): 47.23 - samples/sec: 2371.61 - lr: 0.000009 - momentum: 0.000000 2023-10-25 11:05:25,709 epoch 9 - iter 720/1809 - loss 0.03584853 - time (sec): 63.40 - samples/sec: 2381.00 - lr: 0.000009 - momentum: 0.000000 2023-10-25 11:05:41,500 epoch 9 - iter 900/1809 - loss 0.03443228 - time (sec): 79.20 - samples/sec: 2386.06 - lr: 0.000008 - momentum: 0.000000 2023-10-25 11:05:57,949 epoch 9 - iter 1080/1809 - loss 0.03283348 - time (sec): 95.64 - samples/sec: 2383.97 - lr: 0.000008 - momentum: 0.000000 2023-10-25 11:06:14,072 epoch 9 - iter 1260/1809 - loss 0.03344930 - time (sec): 111.77 - samples/sec: 2378.11 - lr: 0.000007 - momentum: 0.000000 2023-10-25 11:06:30,047 epoch 9 - iter 1440/1809 - loss 0.03338922 - time (sec): 127.74 - samples/sec: 2380.90 - lr: 0.000007 - momentum: 0.000000 2023-10-25 11:06:45,210 epoch 9 - iter 1620/1809 - loss 0.03462184 - time (sec): 142.91 - samples/sec: 2379.23 - lr: 0.000006 - momentum: 0.000000 2023-10-25 11:07:00,995 epoch 9 - iter 1800/1809 - loss 0.03463472 - time (sec): 158.69 - samples/sec: 2383.29 - lr: 0.000006 - momentum: 0.000000 2023-10-25 11:07:01,773 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:07:01,773 EPOCH 9 done: loss 0.0347 - lr: 0.000006 2023-10-25 11:07:06,528 DEV : loss 0.2776682376861572 - f1-score (micro avg) 0.5031 2023-10-25 11:07:06,550 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:07:22,652 epoch 10 - iter 180/1809 - loss 0.02754181 - time (sec): 16.10 - samples/sec: 2301.55 - lr: 0.000005 - momentum: 0.000000 2023-10-25 11:07:38,870 epoch 10 - iter 360/1809 - loss 0.03479173 - time (sec): 32.32 - samples/sec: 2325.30 - lr: 0.000004 - momentum: 0.000000 2023-10-25 11:07:55,201 epoch 10 - iter 540/1809 - loss 0.03464083 - time (sec): 48.65 - samples/sec: 2351.22 - lr: 0.000004 - momentum: 0.000000 2023-10-25 11:08:11,048 epoch 10 - iter 720/1809 - loss 0.03422069 - time (sec): 64.50 - samples/sec: 2358.86 - lr: 0.000003 - momentum: 0.000000 2023-10-25 11:08:26,946 epoch 10 - iter 900/1809 - loss 0.03352713 - time (sec): 80.40 - samples/sec: 2373.35 - lr: 0.000003 - momentum: 0.000000 2023-10-25 11:08:42,565 epoch 10 - iter 1080/1809 - loss 0.03377603 - time (sec): 96.01 - samples/sec: 2365.83 - lr: 0.000002 - momentum: 0.000000 2023-10-25 11:08:58,382 epoch 10 - iter 1260/1809 - loss 0.03388777 - time (sec): 111.83 - samples/sec: 2369.29 - lr: 0.000002 - momentum: 0.000000 2023-10-25 11:09:14,125 epoch 10 - iter 1440/1809 - loss 0.03414918 - time (sec): 127.57 - samples/sec: 2372.33 - lr: 0.000001 - momentum: 0.000000 2023-10-25 11:09:30,395 epoch 10 - iter 1620/1809 - loss 0.03466586 - time (sec): 143.84 - samples/sec: 2374.22 - lr: 0.000001 - momentum: 0.000000 2023-10-25 11:09:46,068 epoch 10 - iter 1800/1809 - loss 0.03590016 - time (sec): 159.52 - samples/sec: 2372.05 - lr: 0.000000 - momentum: 0.000000 2023-10-25 11:09:46,864 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:09:46,864 EPOCH 10 done: loss 0.0359 - lr: 0.000000 2023-10-25 11:09:51,615 DEV : loss 0.2868908643722534 - f1-score (micro avg) 0.4824 2023-10-25 11:09:52,189 ---------------------------------------------------------------------------------------------------- 2023-10-25 11:09:52,190 Loading model from best epoch ... 2023-10-25 11:09:53,952 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org 2023-10-25 11:10:00,212 Results: - F-score (micro) 0.6416 - F-score (macro) 0.4392 - Accuracy 0.4784 By class: precision recall f1-score support loc 0.6730 0.7208 0.6961 591 pers 0.5624 0.6947 0.6216 357 org 0.0000 0.0000 0.0000 79 micro avg 0.6276 0.6563 0.6416 1027 macro avg 0.4118 0.4718 0.4392 1027 weighted avg 0.5828 0.6563 0.6166 1027 2023-10-25 11:10:00,213 ----------------------------------------------------------------------------------------------------