2023-10-18 18:52:52,741 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,741 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-18 18:52:52,741 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Train: 5901 sentences 2023-10-18 18:52:52,742 (train_with_dev=False, train_with_test=False) 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Training Params: 2023-10-18 18:52:52,742 - learning_rate: "3e-05" 2023-10-18 18:52:52,742 - mini_batch_size: "8" 2023-10-18 18:52:52,742 - max_epochs: "10" 2023-10-18 18:52:52,742 - shuffle: "True" 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Plugins: 2023-10-18 18:52:52,742 - TensorboardLogger 2023-10-18 18:52:52,742 - LinearScheduler | warmup_fraction: '0.1' 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Final evaluation on model from best epoch (best-model.pt) 2023-10-18 18:52:52,742 - metric: "('micro avg', 'f1-score')" 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Computation: 2023-10-18 18:52:52,742 - compute on device: cuda:0 2023-10-18 18:52:52,742 - embedding storage: none 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:52:52,742 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-18 18:52:54,502 epoch 1 - iter 73/738 - loss 3.81874353 - time (sec): 1.76 - samples/sec: 9383.08 - lr: 0.000003 - momentum: 0.000000 2023-10-18 18:52:56,284 epoch 1 - iter 146/738 - loss 3.68234957 - time (sec): 3.54 - samples/sec: 8933.75 - lr: 0.000006 - momentum: 0.000000 2023-10-18 18:52:58,194 epoch 1 - iter 219/738 - loss 3.37630765 - time (sec): 5.45 - samples/sec: 9239.17 - lr: 0.000009 - momentum: 0.000000 2023-10-18 18:52:59,863 epoch 1 - iter 292/738 - loss 3.02254508 - time (sec): 7.12 - samples/sec: 9456.64 - lr: 0.000012 - momentum: 0.000000 2023-10-18 18:53:01,582 epoch 1 - iter 365/738 - loss 2.66170049 - time (sec): 8.84 - samples/sec: 9361.30 - lr: 0.000015 - momentum: 0.000000 2023-10-18 18:53:03,272 epoch 1 - iter 438/738 - loss 2.36532082 - time (sec): 10.53 - samples/sec: 9328.38 - lr: 0.000018 - momentum: 0.000000 2023-10-18 18:53:05,062 epoch 1 - iter 511/738 - loss 2.11033803 - time (sec): 12.32 - samples/sec: 9374.21 - lr: 0.000021 - momentum: 0.000000 2023-10-18 18:53:06,754 epoch 1 - iter 584/738 - loss 1.93341360 - time (sec): 14.01 - samples/sec: 9374.65 - lr: 0.000024 - momentum: 0.000000 2023-10-18 18:53:08,399 epoch 1 - iter 657/738 - loss 1.79640058 - time (sec): 15.66 - samples/sec: 9356.30 - lr: 0.000027 - momentum: 0.000000 2023-10-18 18:53:10,201 epoch 1 - iter 730/738 - loss 1.66035043 - time (sec): 17.46 - samples/sec: 9446.21 - lr: 0.000030 - momentum: 0.000000 2023-10-18 18:53:10,377 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:53:10,377 EPOCH 1 done: loss 1.6503 - lr: 0.000030 2023-10-18 18:53:13,137 DEV : loss 0.48679542541503906 - f1-score (micro avg) 0.0 2023-10-18 18:53:13,162 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:53:14,888 epoch 2 - iter 73/738 - loss 0.53428200 - time (sec): 1.73 - samples/sec: 9434.51 - lr: 0.000030 - momentum: 0.000000 2023-10-18 18:53:16,772 epoch 2 - iter 146/738 - loss 0.53407256 - time (sec): 3.61 - samples/sec: 9471.60 - lr: 0.000029 - momentum: 0.000000 2023-10-18 18:53:18,686 epoch 2 - iter 219/738 - loss 0.52996403 - time (sec): 5.52 - samples/sec: 9495.57 - lr: 0.000029 - momentum: 0.000000 2023-10-18 18:53:20,509 epoch 2 - iter 292/738 - loss 0.53131590 - time (sec): 7.35 - samples/sec: 9415.99 - lr: 0.000029 - momentum: 0.000000 2023-10-18 18:53:22,170 epoch 2 - iter 365/738 - loss 0.52158207 - time (sec): 9.01 - samples/sec: 9329.11 - lr: 0.000028 - momentum: 0.000000 2023-10-18 18:53:23,928 epoch 2 - iter 438/738 - loss 0.51558366 - time (sec): 10.77 - samples/sec: 9362.28 - lr: 0.000028 - momentum: 0.000000 2023-10-18 18:53:25,719 epoch 2 - iter 511/738 - loss 0.49662623 - time (sec): 12.56 - samples/sec: 9450.83 - lr: 0.000028 - momentum: 0.000000 2023-10-18 18:53:27,382 epoch 2 - iter 584/738 - loss 0.49077712 - time (sec): 14.22 - samples/sec: 9407.95 - lr: 0.000027 - momentum: 0.000000 2023-10-18 18:53:29,071 epoch 2 - iter 657/738 - loss 0.48484877 - time (sec): 15.91 - samples/sec: 9359.70 - lr: 0.000027 - momentum: 0.000000 2023-10-18 18:53:30,846 epoch 2 - iter 730/738 - loss 0.47901795 - time (sec): 17.68 - samples/sec: 9310.89 - lr: 0.000027 - momentum: 0.000000 2023-10-18 18:53:31,028 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:53:31,029 EPOCH 2 done: loss 0.4785 - lr: 0.000027 2023-10-18 18:53:38,087 DEV : loss 0.33998891711235046 - f1-score (micro avg) 0.2712 2023-10-18 18:53:38,113 saving best model 2023-10-18 18:53:38,141 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:53:39,865 epoch 3 - iter 73/738 - loss 0.40935465 - time (sec): 1.72 - samples/sec: 9824.36 - lr: 0.000026 - momentum: 0.000000 2023-10-18 18:53:41,684 epoch 3 - iter 146/738 - loss 0.41668843 - time (sec): 3.54 - samples/sec: 9634.44 - lr: 0.000026 - momentum: 0.000000 2023-10-18 18:53:43,431 epoch 3 - iter 219/738 - loss 0.41715597 - time (sec): 5.29 - samples/sec: 9480.32 - lr: 0.000026 - momentum: 0.000000 2023-10-18 18:53:45,146 epoch 3 - iter 292/738 - loss 0.41227420 - time (sec): 7.00 - samples/sec: 9447.71 - lr: 0.000025 - momentum: 0.000000 2023-10-18 18:53:46,726 epoch 3 - iter 365/738 - loss 0.41105667 - time (sec): 8.58 - samples/sec: 9313.13 - lr: 0.000025 - momentum: 0.000000 2023-10-18 18:53:48,446 epoch 3 - iter 438/738 - loss 0.40654280 - time (sec): 10.30 - samples/sec: 9335.83 - lr: 0.000025 - momentum: 0.000000 2023-10-18 18:53:50,257 epoch 3 - iter 511/738 - loss 0.39785791 - time (sec): 12.11 - samples/sec: 9328.86 - lr: 0.000024 - momentum: 0.000000 2023-10-18 18:53:52,055 epoch 3 - iter 584/738 - loss 0.39819890 - time (sec): 13.91 - samples/sec: 9430.47 - lr: 0.000024 - momentum: 0.000000 2023-10-18 18:53:53,814 epoch 3 - iter 657/738 - loss 0.39752472 - time (sec): 15.67 - samples/sec: 9377.86 - lr: 0.000024 - momentum: 0.000000 2023-10-18 18:53:55,587 epoch 3 - iter 730/738 - loss 0.39992408 - time (sec): 17.45 - samples/sec: 9426.87 - lr: 0.000023 - momentum: 0.000000 2023-10-18 18:53:55,783 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:53:55,784 EPOCH 3 done: loss 0.3998 - lr: 0.000023 2023-10-18 18:54:02,909 DEV : loss 0.30542612075805664 - f1-score (micro avg) 0.32 2023-10-18 18:54:02,934 saving best model 2023-10-18 18:54:02,977 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:54:04,826 epoch 4 - iter 73/738 - loss 0.36944310 - time (sec): 1.85 - samples/sec: 9510.06 - lr: 0.000023 - momentum: 0.000000 2023-10-18 18:54:06,476 epoch 4 - iter 146/738 - loss 0.35416470 - time (sec): 3.50 - samples/sec: 9315.70 - lr: 0.000023 - momentum: 0.000000 2023-10-18 18:54:08,180 epoch 4 - iter 219/738 - loss 0.36472416 - time (sec): 5.20 - samples/sec: 9343.76 - lr: 0.000022 - momentum: 0.000000 2023-10-18 18:54:09,909 epoch 4 - iter 292/738 - loss 0.36539814 - time (sec): 6.93 - samples/sec: 9519.65 - lr: 0.000022 - momentum: 0.000000 2023-10-18 18:54:11,751 epoch 4 - iter 365/738 - loss 0.36058865 - time (sec): 8.77 - samples/sec: 9569.18 - lr: 0.000022 - momentum: 0.000000 2023-10-18 18:54:13,564 epoch 4 - iter 438/738 - loss 0.36988378 - time (sec): 10.59 - samples/sec: 9494.32 - lr: 0.000021 - momentum: 0.000000 2023-10-18 18:54:15,301 epoch 4 - iter 511/738 - loss 0.36884095 - time (sec): 12.32 - samples/sec: 9483.53 - lr: 0.000021 - momentum: 0.000000 2023-10-18 18:54:16,957 epoch 4 - iter 584/738 - loss 0.36969941 - time (sec): 13.98 - samples/sec: 9494.13 - lr: 0.000021 - momentum: 0.000000 2023-10-18 18:54:18,684 epoch 4 - iter 657/738 - loss 0.36761614 - time (sec): 15.71 - samples/sec: 9486.58 - lr: 0.000020 - momentum: 0.000000 2023-10-18 18:54:20,383 epoch 4 - iter 730/738 - loss 0.36714089 - time (sec): 17.40 - samples/sec: 9473.64 - lr: 0.000020 - momentum: 0.000000 2023-10-18 18:54:20,563 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:54:20,563 EPOCH 4 done: loss 0.3663 - lr: 0.000020 2023-10-18 18:54:27,702 DEV : loss 0.2950303554534912 - f1-score (micro avg) 0.3587 2023-10-18 18:54:27,728 saving best model 2023-10-18 18:54:27,766 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:54:29,457 epoch 5 - iter 73/738 - loss 0.34146707 - time (sec): 1.69 - samples/sec: 9529.99 - lr: 0.000020 - momentum: 0.000000 2023-10-18 18:54:31,179 epoch 5 - iter 146/738 - loss 0.34642612 - time (sec): 3.41 - samples/sec: 9364.92 - lr: 0.000019 - momentum: 0.000000 2023-10-18 18:54:32,907 epoch 5 - iter 219/738 - loss 0.34668670 - time (sec): 5.14 - samples/sec: 9395.92 - lr: 0.000019 - momentum: 0.000000 2023-10-18 18:54:35,219 epoch 5 - iter 292/738 - loss 0.34194245 - time (sec): 7.45 - samples/sec: 9100.75 - lr: 0.000019 - momentum: 0.000000 2023-10-18 18:54:37,017 epoch 5 - iter 365/738 - loss 0.34187389 - time (sec): 9.25 - samples/sec: 9123.73 - lr: 0.000018 - momentum: 0.000000 2023-10-18 18:54:38,755 epoch 5 - iter 438/738 - loss 0.34124463 - time (sec): 10.99 - samples/sec: 9147.79 - lr: 0.000018 - momentum: 0.000000 2023-10-18 18:54:40,488 epoch 5 - iter 511/738 - loss 0.34019308 - time (sec): 12.72 - samples/sec: 8986.48 - lr: 0.000018 - momentum: 0.000000 2023-10-18 18:54:42,281 epoch 5 - iter 584/738 - loss 0.34038501 - time (sec): 14.51 - samples/sec: 8887.32 - lr: 0.000017 - momentum: 0.000000 2023-10-18 18:54:44,097 epoch 5 - iter 657/738 - loss 0.33829006 - time (sec): 16.33 - samples/sec: 8947.38 - lr: 0.000017 - momentum: 0.000000 2023-10-18 18:54:45,929 epoch 5 - iter 730/738 - loss 0.33961410 - time (sec): 18.16 - samples/sec: 9066.69 - lr: 0.000017 - momentum: 0.000000 2023-10-18 18:54:46,122 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:54:46,122 EPOCH 5 done: loss 0.3400 - lr: 0.000017 2023-10-18 18:54:53,313 DEV : loss 0.2756083011627197 - f1-score (micro avg) 0.3862 2023-10-18 18:54:53,339 saving best model 2023-10-18 18:54:53,378 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:54:55,141 epoch 6 - iter 73/738 - loss 0.34120287 - time (sec): 1.76 - samples/sec: 10190.28 - lr: 0.000016 - momentum: 0.000000 2023-10-18 18:54:56,920 epoch 6 - iter 146/738 - loss 0.32162573 - time (sec): 3.54 - samples/sec: 9838.24 - lr: 0.000016 - momentum: 0.000000 2023-10-18 18:54:58,625 epoch 6 - iter 219/738 - loss 0.31874927 - time (sec): 5.25 - samples/sec: 9710.50 - lr: 0.000016 - momentum: 0.000000 2023-10-18 18:55:00,318 epoch 6 - iter 292/738 - loss 0.32065056 - time (sec): 6.94 - samples/sec: 9693.25 - lr: 0.000015 - momentum: 0.000000 2023-10-18 18:55:02,163 epoch 6 - iter 365/738 - loss 0.31480678 - time (sec): 8.78 - samples/sec: 9569.85 - lr: 0.000015 - momentum: 0.000000 2023-10-18 18:55:03,941 epoch 6 - iter 438/738 - loss 0.32409156 - time (sec): 10.56 - samples/sec: 9331.67 - lr: 0.000015 - momentum: 0.000000 2023-10-18 18:55:05,700 epoch 6 - iter 511/738 - loss 0.32737315 - time (sec): 12.32 - samples/sec: 9351.69 - lr: 0.000014 - momentum: 0.000000 2023-10-18 18:55:07,401 epoch 6 - iter 584/738 - loss 0.32330551 - time (sec): 14.02 - samples/sec: 9309.21 - lr: 0.000014 - momentum: 0.000000 2023-10-18 18:55:09,120 epoch 6 - iter 657/738 - loss 0.32258843 - time (sec): 15.74 - samples/sec: 9300.41 - lr: 0.000014 - momentum: 0.000000 2023-10-18 18:55:10,901 epoch 6 - iter 730/738 - loss 0.32208614 - time (sec): 17.52 - samples/sec: 9395.06 - lr: 0.000013 - momentum: 0.000000 2023-10-18 18:55:11,098 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:55:11,098 EPOCH 6 done: loss 0.3219 - lr: 0.000013 2023-10-18 18:55:18,261 DEV : loss 0.26639610528945923 - f1-score (micro avg) 0.4146 2023-10-18 18:55:18,288 saving best model 2023-10-18 18:55:18,322 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:55:20,066 epoch 7 - iter 73/738 - loss 0.30556597 - time (sec): 1.74 - samples/sec: 9564.01 - lr: 0.000013 - momentum: 0.000000 2023-10-18 18:55:21,775 epoch 7 - iter 146/738 - loss 0.31726978 - time (sec): 3.45 - samples/sec: 9546.50 - lr: 0.000013 - momentum: 0.000000 2023-10-18 18:55:23,473 epoch 7 - iter 219/738 - loss 0.30091048 - time (sec): 5.15 - samples/sec: 9444.26 - lr: 0.000012 - momentum: 0.000000 2023-10-18 18:55:25,177 epoch 7 - iter 292/738 - loss 0.30981691 - time (sec): 6.85 - samples/sec: 9502.79 - lr: 0.000012 - momentum: 0.000000 2023-10-18 18:55:26,970 epoch 7 - iter 365/738 - loss 0.30604870 - time (sec): 8.65 - samples/sec: 9520.74 - lr: 0.000012 - momentum: 0.000000 2023-10-18 18:55:28,704 epoch 7 - iter 438/738 - loss 0.30386617 - time (sec): 10.38 - samples/sec: 9526.86 - lr: 0.000011 - momentum: 0.000000 2023-10-18 18:55:30,392 epoch 7 - iter 511/738 - loss 0.30690882 - time (sec): 12.07 - samples/sec: 9522.71 - lr: 0.000011 - momentum: 0.000000 2023-10-18 18:55:32,166 epoch 7 - iter 584/738 - loss 0.30363679 - time (sec): 13.84 - samples/sec: 9488.93 - lr: 0.000011 - momentum: 0.000000 2023-10-18 18:55:33,875 epoch 7 - iter 657/738 - loss 0.30303827 - time (sec): 15.55 - samples/sec: 9521.30 - lr: 0.000010 - momentum: 0.000000 2023-10-18 18:55:35,616 epoch 7 - iter 730/738 - loss 0.30566278 - time (sec): 17.29 - samples/sec: 9534.15 - lr: 0.000010 - momentum: 0.000000 2023-10-18 18:55:35,806 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:55:35,806 EPOCH 7 done: loss 0.3074 - lr: 0.000010 2023-10-18 18:55:42,992 DEV : loss 0.2636333405971527 - f1-score (micro avg) 0.4126 2023-10-18 18:55:43,019 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:55:44,858 epoch 8 - iter 73/738 - loss 0.30261683 - time (sec): 1.84 - samples/sec: 11006.58 - lr: 0.000010 - momentum: 0.000000 2023-10-18 18:55:46,596 epoch 8 - iter 146/738 - loss 0.30342876 - time (sec): 3.58 - samples/sec: 10365.01 - lr: 0.000009 - momentum: 0.000000 2023-10-18 18:55:48,328 epoch 8 - iter 219/738 - loss 0.29957239 - time (sec): 5.31 - samples/sec: 9959.68 - lr: 0.000009 - momentum: 0.000000 2023-10-18 18:55:50,041 epoch 8 - iter 292/738 - loss 0.30420435 - time (sec): 7.02 - samples/sec: 9882.01 - lr: 0.000009 - momentum: 0.000000 2023-10-18 18:55:51,706 epoch 8 - iter 365/738 - loss 0.29943806 - time (sec): 8.69 - samples/sec: 9704.42 - lr: 0.000008 - momentum: 0.000000 2023-10-18 18:55:53,371 epoch 8 - iter 438/738 - loss 0.30018714 - time (sec): 10.35 - samples/sec: 9670.71 - lr: 0.000008 - momentum: 0.000000 2023-10-18 18:55:55,084 epoch 8 - iter 511/738 - loss 0.29946570 - time (sec): 12.06 - samples/sec: 9639.16 - lr: 0.000008 - momentum: 0.000000 2023-10-18 18:55:56,861 epoch 8 - iter 584/738 - loss 0.29967547 - time (sec): 13.84 - samples/sec: 9609.30 - lr: 0.000007 - momentum: 0.000000 2023-10-18 18:55:58,534 epoch 8 - iter 657/738 - loss 0.30042341 - time (sec): 15.51 - samples/sec: 9584.72 - lr: 0.000007 - momentum: 0.000000 2023-10-18 18:56:00,204 epoch 8 - iter 730/738 - loss 0.29829974 - time (sec): 17.18 - samples/sec: 9567.93 - lr: 0.000007 - momentum: 0.000000 2023-10-18 18:56:00,391 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:00,391 EPOCH 8 done: loss 0.2999 - lr: 0.000007 2023-10-18 18:56:07,599 DEV : loss 0.2585228383541107 - f1-score (micro avg) 0.4277 2023-10-18 18:56:07,625 saving best model 2023-10-18 18:56:07,658 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:09,344 epoch 9 - iter 73/738 - loss 0.30758024 - time (sec): 1.69 - samples/sec: 9099.32 - lr: 0.000006 - momentum: 0.000000 2023-10-18 18:56:11,067 epoch 9 - iter 146/738 - loss 0.28960177 - time (sec): 3.41 - samples/sec: 9174.55 - lr: 0.000006 - momentum: 0.000000 2023-10-18 18:56:12,916 epoch 9 - iter 219/738 - loss 0.30272308 - time (sec): 5.26 - samples/sec: 9519.35 - lr: 0.000006 - momentum: 0.000000 2023-10-18 18:56:15,107 epoch 9 - iter 292/738 - loss 0.30045146 - time (sec): 7.45 - samples/sec: 8945.26 - lr: 0.000005 - momentum: 0.000000 2023-10-18 18:56:16,846 epoch 9 - iter 365/738 - loss 0.30003631 - time (sec): 9.19 - samples/sec: 8958.35 - lr: 0.000005 - momentum: 0.000000 2023-10-18 18:56:18,557 epoch 9 - iter 438/738 - loss 0.30160690 - time (sec): 10.90 - samples/sec: 8970.13 - lr: 0.000005 - momentum: 0.000000 2023-10-18 18:56:20,297 epoch 9 - iter 511/738 - loss 0.29885683 - time (sec): 12.64 - samples/sec: 9090.97 - lr: 0.000004 - momentum: 0.000000 2023-10-18 18:56:22,022 epoch 9 - iter 584/738 - loss 0.29861281 - time (sec): 14.36 - samples/sec: 9134.26 - lr: 0.000004 - momentum: 0.000000 2023-10-18 18:56:23,671 epoch 9 - iter 657/738 - loss 0.29753874 - time (sec): 16.01 - samples/sec: 9118.57 - lr: 0.000004 - momentum: 0.000000 2023-10-18 18:56:25,423 epoch 9 - iter 730/738 - loss 0.29722536 - time (sec): 17.76 - samples/sec: 9159.83 - lr: 0.000003 - momentum: 0.000000 2023-10-18 18:56:25,709 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:25,709 EPOCH 9 done: loss 0.2950 - lr: 0.000003 2023-10-18 18:56:32,950 DEV : loss 0.2576240301132202 - f1-score (micro avg) 0.431 2023-10-18 18:56:32,976 saving best model 2023-10-18 18:56:33,008 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:34,836 epoch 10 - iter 73/738 - loss 0.25004751 - time (sec): 1.83 - samples/sec: 9649.60 - lr: 0.000003 - momentum: 0.000000 2023-10-18 18:56:36,574 epoch 10 - iter 146/738 - loss 0.26018308 - time (sec): 3.57 - samples/sec: 9518.95 - lr: 0.000003 - momentum: 0.000000 2023-10-18 18:56:38,376 epoch 10 - iter 219/738 - loss 0.27025184 - time (sec): 5.37 - samples/sec: 9358.69 - lr: 0.000002 - momentum: 0.000000 2023-10-18 18:56:40,175 epoch 10 - iter 292/738 - loss 0.27857312 - time (sec): 7.17 - samples/sec: 9197.61 - lr: 0.000002 - momentum: 0.000000 2023-10-18 18:56:41,871 epoch 10 - iter 365/738 - loss 0.28303110 - time (sec): 8.86 - samples/sec: 9296.23 - lr: 0.000002 - momentum: 0.000000 2023-10-18 18:56:43,610 epoch 10 - iter 438/738 - loss 0.28434751 - time (sec): 10.60 - samples/sec: 9421.95 - lr: 0.000001 - momentum: 0.000000 2023-10-18 18:56:45,319 epoch 10 - iter 511/738 - loss 0.28539794 - time (sec): 12.31 - samples/sec: 9386.12 - lr: 0.000001 - momentum: 0.000000 2023-10-18 18:56:47,129 epoch 10 - iter 584/738 - loss 0.28911825 - time (sec): 14.12 - samples/sec: 9443.73 - lr: 0.000001 - momentum: 0.000000 2023-10-18 18:56:48,852 epoch 10 - iter 657/738 - loss 0.28832023 - time (sec): 15.84 - samples/sec: 9435.15 - lr: 0.000000 - momentum: 0.000000 2023-10-18 18:56:50,534 epoch 10 - iter 730/738 - loss 0.28826766 - time (sec): 17.52 - samples/sec: 9417.66 - lr: 0.000000 - momentum: 0.000000 2023-10-18 18:56:50,717 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:50,718 EPOCH 10 done: loss 0.2885 - lr: 0.000000 2023-10-18 18:56:57,957 DEV : loss 0.2570817172527313 - f1-score (micro avg) 0.4335 2023-10-18 18:56:57,984 saving best model 2023-10-18 18:56:58,046 ---------------------------------------------------------------------------------------------------- 2023-10-18 18:56:58,046 Loading model from best epoch ... 2023-10-18 18:56:58,126 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-10-18 18:57:00,796 Results: - F-score (micro) 0.4619 - F-score (macro) 0.2331 - Accuracy 0.3203 By class: precision recall f1-score support loc 0.4967 0.6935 0.5788 858 pers 0.3154 0.4246 0.3619 537 org 0.1429 0.0076 0.0144 132 time 0.2439 0.1852 0.2105 54 prod 0.0000 0.0000 0.0000 61 micro avg 0.4236 0.5079 0.4619 1642 macro avg 0.2398 0.2622 0.2331 1642 weighted avg 0.3822 0.5079 0.4289 1642 2023-10-18 18:57:00,796 ----------------------------------------------------------------------------------------------------