2023-10-13 14:08:11,374 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Train: 3575 sentences 2023-10-13 14:08:11,375 (train_with_dev=False, train_with_test=False) 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Training Params: 2023-10-13 14:08:11,375 - learning_rate: "5e-05" 2023-10-13 14:08:11,375 - mini_batch_size: "4" 2023-10-13 14:08:11,375 - max_epochs: "10" 2023-10-13 14:08:11,375 - shuffle: "True" 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Plugins: 2023-10-13 14:08:11,375 - LinearScheduler | warmup_fraction: '0.1' 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Final evaluation on model from best epoch (best-model.pt) 2023-10-13 14:08:11,375 - metric: "('micro avg', 'f1-score')" 2023-10-13 14:08:11,375 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,375 Computation: 2023-10-13 14:08:11,376 - compute on device: cuda:0 2023-10-13 14:08:11,376 - embedding storage: none 2023-10-13 14:08:11,376 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,376 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5" 2023-10-13 14:08:11,376 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:11,376 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:15,898 epoch 1 - iter 89/894 - loss 2.52923575 - time (sec): 4.52 - samples/sec: 2182.09 - lr: 0.000005 - momentum: 0.000000 2023-10-13 14:08:20,012 epoch 1 - iter 178/894 - loss 1.58342524 - time (sec): 8.64 - samples/sec: 2207.18 - lr: 0.000010 - momentum: 0.000000 2023-10-13 14:08:24,203 epoch 1 - iter 267/894 - loss 1.23639423 - time (sec): 12.83 - samples/sec: 2136.52 - lr: 0.000015 - momentum: 0.000000 2023-10-13 14:08:28,550 epoch 1 - iter 356/894 - loss 1.01715624 - time (sec): 17.17 - samples/sec: 2108.54 - lr: 0.000020 - momentum: 0.000000 2023-10-13 14:08:32,844 epoch 1 - iter 445/894 - loss 0.87794477 - time (sec): 21.47 - samples/sec: 2090.89 - lr: 0.000025 - momentum: 0.000000 2023-10-13 14:08:36,910 epoch 1 - iter 534/894 - loss 0.77886231 - time (sec): 25.53 - samples/sec: 2086.30 - lr: 0.000030 - momentum: 0.000000 2023-10-13 14:08:40,939 epoch 1 - iter 623/894 - loss 0.70820496 - time (sec): 29.56 - samples/sec: 2091.56 - lr: 0.000035 - momentum: 0.000000 2023-10-13 14:08:45,129 epoch 1 - iter 712/894 - loss 0.65158695 - time (sec): 33.75 - samples/sec: 2073.39 - lr: 0.000040 - momentum: 0.000000 2023-10-13 14:08:49,139 epoch 1 - iter 801/894 - loss 0.60985499 - time (sec): 37.76 - samples/sec: 2064.58 - lr: 0.000045 - momentum: 0.000000 2023-10-13 14:08:53,278 epoch 1 - iter 890/894 - loss 0.57386967 - time (sec): 41.90 - samples/sec: 2057.76 - lr: 0.000050 - momentum: 0.000000 2023-10-13 14:08:53,459 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:08:53,459 EPOCH 1 done: loss 0.5727 - lr: 0.000050 2023-10-13 14:08:58,500 DEV : loss 0.18978139758110046 - f1-score (micro avg) 0.5916 2023-10-13 14:08:58,525 saving best model 2023-10-13 14:08:58,878 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:09:03,117 epoch 2 - iter 89/894 - loss 0.21194614 - time (sec): 4.24 - samples/sec: 2181.41 - lr: 0.000049 - momentum: 0.000000 2023-10-13 14:09:07,553 epoch 2 - iter 178/894 - loss 0.19054416 - time (sec): 8.67 - samples/sec: 2045.48 - lr: 0.000049 - momentum: 0.000000 2023-10-13 14:09:12,119 epoch 2 - iter 267/894 - loss 0.17595858 - time (sec): 13.24 - samples/sec: 1960.01 - lr: 0.000048 - momentum: 0.000000 2023-10-13 14:09:16,730 epoch 2 - iter 356/894 - loss 0.17594605 - time (sec): 17.85 - samples/sec: 1879.92 - lr: 0.000048 - momentum: 0.000000 2023-10-13 14:09:21,206 epoch 2 - iter 445/894 - loss 0.17142673 - time (sec): 22.33 - samples/sec: 1886.32 - lr: 0.000047 - momentum: 0.000000 2023-10-13 14:09:25,650 epoch 2 - iter 534/894 - loss 0.16657106 - time (sec): 26.77 - samples/sec: 1893.29 - lr: 0.000047 - momentum: 0.000000 2023-10-13 14:09:29,793 epoch 2 - iter 623/894 - loss 0.16819979 - time (sec): 30.91 - samples/sec: 1920.54 - lr: 0.000046 - momentum: 0.000000 2023-10-13 14:09:33,961 epoch 2 - iter 712/894 - loss 0.16248898 - time (sec): 35.08 - samples/sec: 1942.69 - lr: 0.000046 - momentum: 0.000000 2023-10-13 14:09:38,270 epoch 2 - iter 801/894 - loss 0.16082101 - time (sec): 39.39 - samples/sec: 1957.79 - lr: 0.000045 - momentum: 0.000000 2023-10-13 14:09:42,495 epoch 2 - iter 890/894 - loss 0.15753470 - time (sec): 43.62 - samples/sec: 1972.33 - lr: 0.000044 - momentum: 0.000000 2023-10-13 14:09:42,682 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:09:42,682 EPOCH 2 done: loss 0.1577 - lr: 0.000044 2023-10-13 14:09:51,308 DEV : loss 0.16749663650989532 - f1-score (micro avg) 0.6977 2023-10-13 14:09:51,338 saving best model 2023-10-13 14:09:51,838 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:09:55,733 epoch 3 - iter 89/894 - loss 0.08007067 - time (sec): 3.89 - samples/sec: 2360.54 - lr: 0.000044 - momentum: 0.000000 2023-10-13 14:09:59,650 epoch 3 - iter 178/894 - loss 0.07640027 - time (sec): 7.81 - samples/sec: 2295.76 - lr: 0.000043 - momentum: 0.000000 2023-10-13 14:10:03,873 epoch 3 - iter 267/894 - loss 0.08683829 - time (sec): 12.03 - samples/sec: 2266.26 - lr: 0.000043 - momentum: 0.000000 2023-10-13 14:10:07,876 epoch 3 - iter 356/894 - loss 0.09438784 - time (sec): 16.04 - samples/sec: 2263.33 - lr: 0.000042 - momentum: 0.000000 2023-10-13 14:10:11,886 epoch 3 - iter 445/894 - loss 0.09349886 - time (sec): 20.05 - samples/sec: 2216.06 - lr: 0.000042 - momentum: 0.000000 2023-10-13 14:10:15,754 epoch 3 - iter 534/894 - loss 0.09086137 - time (sec): 23.91 - samples/sec: 2207.82 - lr: 0.000041 - momentum: 0.000000 2023-10-13 14:10:19,673 epoch 3 - iter 623/894 - loss 0.09013375 - time (sec): 27.83 - samples/sec: 2181.57 - lr: 0.000041 - momentum: 0.000000 2023-10-13 14:10:23,738 epoch 3 - iter 712/894 - loss 0.09024790 - time (sec): 31.90 - samples/sec: 2171.31 - lr: 0.000040 - momentum: 0.000000 2023-10-13 14:10:27,643 epoch 3 - iter 801/894 - loss 0.09257071 - time (sec): 35.80 - samples/sec: 2178.38 - lr: 0.000039 - momentum: 0.000000 2023-10-13 14:10:31,533 epoch 3 - iter 890/894 - loss 0.09331365 - time (sec): 39.69 - samples/sec: 2172.02 - lr: 0.000039 - momentum: 0.000000 2023-10-13 14:10:31,707 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:10:31,707 EPOCH 3 done: loss 0.0939 - lr: 0.000039 2023-10-13 14:10:40,166 DEV : loss 0.1999683529138565 - f1-score (micro avg) 0.7291 2023-10-13 14:10:40,193 saving best model 2023-10-13 14:10:40,669 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:10:44,976 epoch 4 - iter 89/894 - loss 0.07161300 - time (sec): 4.30 - samples/sec: 2161.37 - lr: 0.000038 - momentum: 0.000000 2023-10-13 14:10:49,749 epoch 4 - iter 178/894 - loss 0.06237632 - time (sec): 9.07 - samples/sec: 1927.98 - lr: 0.000038 - momentum: 0.000000 2023-10-13 14:10:54,687 epoch 4 - iter 267/894 - loss 0.06571349 - time (sec): 14.01 - samples/sec: 1972.83 - lr: 0.000037 - momentum: 0.000000 2023-10-13 14:10:58,893 epoch 4 - iter 356/894 - loss 0.06326807 - time (sec): 18.22 - samples/sec: 1959.55 - lr: 0.000037 - momentum: 0.000000 2023-10-13 14:11:03,057 epoch 4 - iter 445/894 - loss 0.06462152 - time (sec): 22.38 - samples/sec: 1972.59 - lr: 0.000036 - momentum: 0.000000 2023-10-13 14:11:07,375 epoch 4 - iter 534/894 - loss 0.06356342 - time (sec): 26.70 - samples/sec: 2004.24 - lr: 0.000036 - momentum: 0.000000 2023-10-13 14:11:11,407 epoch 4 - iter 623/894 - loss 0.06359237 - time (sec): 30.73 - samples/sec: 2007.14 - lr: 0.000035 - momentum: 0.000000 2023-10-13 14:11:15,432 epoch 4 - iter 712/894 - loss 0.06394484 - time (sec): 34.76 - samples/sec: 2010.72 - lr: 0.000034 - momentum: 0.000000 2023-10-13 14:11:19,477 epoch 4 - iter 801/894 - loss 0.06383650 - time (sec): 38.80 - samples/sec: 2010.42 - lr: 0.000034 - momentum: 0.000000 2023-10-13 14:11:23,578 epoch 4 - iter 890/894 - loss 0.06368701 - time (sec): 42.90 - samples/sec: 2009.83 - lr: 0.000033 - momentum: 0.000000 2023-10-13 14:11:23,755 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:11:23,755 EPOCH 4 done: loss 0.0638 - lr: 0.000033 2023-10-13 14:11:32,038 DEV : loss 0.22368095815181732 - f1-score (micro avg) 0.7451 2023-10-13 14:11:32,065 saving best model 2023-10-13 14:11:32,473 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:11:36,581 epoch 5 - iter 89/894 - loss 0.05326395 - time (sec): 4.10 - samples/sec: 2126.63 - lr: 0.000033 - momentum: 0.000000 2023-10-13 14:11:40,582 epoch 5 - iter 178/894 - loss 0.04466412 - time (sec): 8.10 - samples/sec: 2102.13 - lr: 0.000032 - momentum: 0.000000 2023-10-13 14:11:44,899 epoch 5 - iter 267/894 - loss 0.04574289 - time (sec): 12.42 - samples/sec: 2112.80 - lr: 0.000032 - momentum: 0.000000 2023-10-13 14:11:48,919 epoch 5 - iter 356/894 - loss 0.04504252 - time (sec): 16.44 - samples/sec: 2116.26 - lr: 0.000031 - momentum: 0.000000 2023-10-13 14:11:53,162 epoch 5 - iter 445/894 - loss 0.04436721 - time (sec): 20.68 - samples/sec: 2130.98 - lr: 0.000031 - momentum: 0.000000 2023-10-13 14:11:57,502 epoch 5 - iter 534/894 - loss 0.04372206 - time (sec): 25.02 - samples/sec: 2107.92 - lr: 0.000030 - momentum: 0.000000 2023-10-13 14:12:01,606 epoch 5 - iter 623/894 - loss 0.04442546 - time (sec): 29.13 - samples/sec: 2096.61 - lr: 0.000029 - momentum: 0.000000 2023-10-13 14:12:05,829 epoch 5 - iter 712/894 - loss 0.04469383 - time (sec): 33.35 - samples/sec: 2095.05 - lr: 0.000029 - momentum: 0.000000 2023-10-13 14:12:09,867 epoch 5 - iter 801/894 - loss 0.04557369 - time (sec): 37.39 - samples/sec: 2080.06 - lr: 0.000028 - momentum: 0.000000 2023-10-13 14:12:14,004 epoch 5 - iter 890/894 - loss 0.04426329 - time (sec): 41.52 - samples/sec: 2074.21 - lr: 0.000028 - momentum: 0.000000 2023-10-13 14:12:14,193 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:12:14,193 EPOCH 5 done: loss 0.0441 - lr: 0.000028 2023-10-13 14:12:22,702 DEV : loss 0.23852457106113434 - f1-score (micro avg) 0.7475 2023-10-13 14:12:22,729 saving best model 2023-10-13 14:12:23,193 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:12:27,238 epoch 6 - iter 89/894 - loss 0.01889556 - time (sec): 4.04 - samples/sec: 2069.29 - lr: 0.000027 - momentum: 0.000000 2023-10-13 14:12:31,500 epoch 6 - iter 178/894 - loss 0.02626898 - time (sec): 8.30 - samples/sec: 2019.45 - lr: 0.000027 - momentum: 0.000000 2023-10-13 14:12:36,124 epoch 6 - iter 267/894 - loss 0.02606331 - time (sec): 12.93 - samples/sec: 2097.55 - lr: 0.000026 - momentum: 0.000000 2023-10-13 14:12:40,260 epoch 6 - iter 356/894 - loss 0.02937353 - time (sec): 17.06 - samples/sec: 2099.91 - lr: 0.000026 - momentum: 0.000000 2023-10-13 14:12:44,576 epoch 6 - iter 445/894 - loss 0.02750190 - time (sec): 21.38 - samples/sec: 2134.02 - lr: 0.000025 - momentum: 0.000000 2023-10-13 14:12:48,628 epoch 6 - iter 534/894 - loss 0.02780421 - time (sec): 25.43 - samples/sec: 2105.98 - lr: 0.000024 - momentum: 0.000000 2023-10-13 14:12:52,732 epoch 6 - iter 623/894 - loss 0.02856228 - time (sec): 29.54 - samples/sec: 2085.01 - lr: 0.000024 - momentum: 0.000000 2023-10-13 14:12:56,924 epoch 6 - iter 712/894 - loss 0.02984563 - time (sec): 33.73 - samples/sec: 2073.64 - lr: 0.000023 - momentum: 0.000000 2023-10-13 14:13:00,987 epoch 6 - iter 801/894 - loss 0.02950493 - time (sec): 37.79 - samples/sec: 2076.16 - lr: 0.000023 - momentum: 0.000000 2023-10-13 14:13:05,151 epoch 6 - iter 890/894 - loss 0.02941361 - time (sec): 41.96 - samples/sec: 2053.84 - lr: 0.000022 - momentum: 0.000000 2023-10-13 14:13:05,332 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:13:05,333 EPOCH 6 done: loss 0.0293 - lr: 0.000022 2023-10-13 14:13:13,835 DEV : loss 0.23937579989433289 - f1-score (micro avg) 0.7575 2023-10-13 14:13:13,863 saving best model 2023-10-13 14:13:14,366 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:13:18,512 epoch 7 - iter 89/894 - loss 0.01705401 - time (sec): 4.14 - samples/sec: 1884.74 - lr: 0.000022 - momentum: 0.000000 2023-10-13 14:13:22,533 epoch 7 - iter 178/894 - loss 0.01759034 - time (sec): 8.17 - samples/sec: 1917.37 - lr: 0.000021 - momentum: 0.000000 2023-10-13 14:13:27,065 epoch 7 - iter 267/894 - loss 0.01849552 - time (sec): 12.70 - samples/sec: 1997.91 - lr: 0.000021 - momentum: 0.000000 2023-10-13 14:13:31,220 epoch 7 - iter 356/894 - loss 0.02024248 - time (sec): 16.85 - samples/sec: 2024.97 - lr: 0.000020 - momentum: 0.000000 2023-10-13 14:13:35,408 epoch 7 - iter 445/894 - loss 0.02149739 - time (sec): 21.04 - samples/sec: 2048.75 - lr: 0.000019 - momentum: 0.000000 2023-10-13 14:13:39,801 epoch 7 - iter 534/894 - loss 0.01928417 - time (sec): 25.43 - samples/sec: 2018.47 - lr: 0.000019 - momentum: 0.000000 2023-10-13 14:13:44,296 epoch 7 - iter 623/894 - loss 0.02198540 - time (sec): 29.93 - samples/sec: 1990.90 - lr: 0.000018 - momentum: 0.000000 2023-10-13 14:13:49,168 epoch 7 - iter 712/894 - loss 0.02082455 - time (sec): 34.80 - samples/sec: 1978.14 - lr: 0.000018 - momentum: 0.000000 2023-10-13 14:13:53,734 epoch 7 - iter 801/894 - loss 0.02160685 - time (sec): 39.37 - samples/sec: 1966.85 - lr: 0.000017 - momentum: 0.000000 2023-10-13 14:13:58,424 epoch 7 - iter 890/894 - loss 0.02101591 - time (sec): 44.06 - samples/sec: 1955.83 - lr: 0.000017 - momentum: 0.000000 2023-10-13 14:13:58,627 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:13:58,627 EPOCH 7 done: loss 0.0209 - lr: 0.000017 2023-10-13 14:14:07,516 DEV : loss 0.2525382936000824 - f1-score (micro avg) 0.7615 2023-10-13 14:14:07,560 saving best model 2023-10-13 14:14:08,054 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:14:12,693 epoch 8 - iter 89/894 - loss 0.01225659 - time (sec): 4.64 - samples/sec: 1823.64 - lr: 0.000016 - momentum: 0.000000 2023-10-13 14:14:17,331 epoch 8 - iter 178/894 - loss 0.00698362 - time (sec): 9.28 - samples/sec: 1794.94 - lr: 0.000016 - momentum: 0.000000 2023-10-13 14:14:22,187 epoch 8 - iter 267/894 - loss 0.00689475 - time (sec): 14.13 - samples/sec: 1845.24 - lr: 0.000015 - momentum: 0.000000 2023-10-13 14:14:26,650 epoch 8 - iter 356/894 - loss 0.00651321 - time (sec): 18.59 - samples/sec: 1906.91 - lr: 0.000014 - momentum: 0.000000 2023-10-13 14:14:30,820 epoch 8 - iter 445/894 - loss 0.00846668 - time (sec): 22.76 - samples/sec: 1928.85 - lr: 0.000014 - momentum: 0.000000 2023-10-13 14:14:35,003 epoch 8 - iter 534/894 - loss 0.00904011 - time (sec): 26.95 - samples/sec: 1942.81 - lr: 0.000013 - momentum: 0.000000 2023-10-13 14:14:39,112 epoch 8 - iter 623/894 - loss 0.00884653 - time (sec): 31.06 - samples/sec: 1959.93 - lr: 0.000013 - momentum: 0.000000 2023-10-13 14:14:43,204 epoch 8 - iter 712/894 - loss 0.00918400 - time (sec): 35.15 - samples/sec: 1971.65 - lr: 0.000012 - momentum: 0.000000 2023-10-13 14:14:47,448 epoch 8 - iter 801/894 - loss 0.00950962 - time (sec): 39.39 - samples/sec: 1969.14 - lr: 0.000012 - momentum: 0.000000 2023-10-13 14:14:51,628 epoch 8 - iter 890/894 - loss 0.00947519 - time (sec): 43.57 - samples/sec: 1978.33 - lr: 0.000011 - momentum: 0.000000 2023-10-13 14:14:51,804 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:14:51,804 EPOCH 8 done: loss 0.0094 - lr: 0.000011 2023-10-13 14:15:00,785 DEV : loss 0.2568976879119873 - f1-score (micro avg) 0.7658 2023-10-13 14:15:00,815 saving best model 2023-10-13 14:15:01,340 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:15:05,956 epoch 9 - iter 89/894 - loss 0.00391659 - time (sec): 4.61 - samples/sec: 1787.79 - lr: 0.000011 - momentum: 0.000000 2023-10-13 14:15:10,412 epoch 9 - iter 178/894 - loss 0.00453941 - time (sec): 9.07 - samples/sec: 1958.05 - lr: 0.000010 - momentum: 0.000000 2023-10-13 14:15:14,661 epoch 9 - iter 267/894 - loss 0.00419557 - time (sec): 13.32 - samples/sec: 2014.76 - lr: 0.000009 - momentum: 0.000000 2023-10-13 14:15:18,739 epoch 9 - iter 356/894 - loss 0.00626206 - time (sec): 17.40 - samples/sec: 2030.77 - lr: 0.000009 - momentum: 0.000000 2023-10-13 14:15:22,908 epoch 9 - iter 445/894 - loss 0.00766227 - time (sec): 21.57 - samples/sec: 2017.53 - lr: 0.000008 - momentum: 0.000000 2023-10-13 14:15:26,928 epoch 9 - iter 534/894 - loss 0.00757263 - time (sec): 25.59 - samples/sec: 2035.91 - lr: 0.000008 - momentum: 0.000000 2023-10-13 14:15:31,064 epoch 9 - iter 623/894 - loss 0.00774753 - time (sec): 29.72 - samples/sec: 2044.80 - lr: 0.000007 - momentum: 0.000000 2023-10-13 14:15:35,087 epoch 9 - iter 712/894 - loss 0.00696736 - time (sec): 33.74 - samples/sec: 2055.60 - lr: 0.000007 - momentum: 0.000000 2023-10-13 14:15:39,286 epoch 9 - iter 801/894 - loss 0.00720776 - time (sec): 37.94 - samples/sec: 2045.59 - lr: 0.000006 - momentum: 0.000000 2023-10-13 14:15:43,335 epoch 9 - iter 890/894 - loss 0.00695611 - time (sec): 41.99 - samples/sec: 2052.94 - lr: 0.000006 - momentum: 0.000000 2023-10-13 14:15:43,509 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:15:43,509 EPOCH 9 done: loss 0.0069 - lr: 0.000006 2023-10-13 14:15:52,300 DEV : loss 0.26707446575164795 - f1-score (micro avg) 0.7733 2023-10-13 14:15:52,332 saving best model 2023-10-13 14:15:52,842 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:15:56,987 epoch 10 - iter 89/894 - loss 0.01316612 - time (sec): 4.14 - samples/sec: 2068.39 - lr: 0.000005 - momentum: 0.000000 2023-10-13 14:16:01,198 epoch 10 - iter 178/894 - loss 0.00979750 - time (sec): 8.35 - samples/sec: 1970.51 - lr: 0.000004 - momentum: 0.000000 2023-10-13 14:16:05,313 epoch 10 - iter 267/894 - loss 0.00661329 - time (sec): 12.47 - samples/sec: 2005.21 - lr: 0.000004 - momentum: 0.000000 2023-10-13 14:16:09,316 epoch 10 - iter 356/894 - loss 0.00704547 - time (sec): 16.47 - samples/sec: 2011.59 - lr: 0.000003 - momentum: 0.000000 2023-10-13 14:16:13,661 epoch 10 - iter 445/894 - loss 0.00624802 - time (sec): 20.82 - samples/sec: 2058.36 - lr: 0.000003 - momentum: 0.000000 2023-10-13 14:16:18,017 epoch 10 - iter 534/894 - loss 0.00619476 - time (sec): 25.17 - samples/sec: 2071.72 - lr: 0.000002 - momentum: 0.000000 2023-10-13 14:16:22,076 epoch 10 - iter 623/894 - loss 0.00569995 - time (sec): 29.23 - samples/sec: 2070.04 - lr: 0.000002 - momentum: 0.000000 2023-10-13 14:16:26,128 epoch 10 - iter 712/894 - loss 0.00579249 - time (sec): 33.28 - samples/sec: 2059.38 - lr: 0.000001 - momentum: 0.000000 2023-10-13 14:16:30,235 epoch 10 - iter 801/894 - loss 0.00526208 - time (sec): 37.39 - samples/sec: 2083.28 - lr: 0.000001 - momentum: 0.000000 2023-10-13 14:16:34,265 epoch 10 - iter 890/894 - loss 0.00512287 - time (sec): 41.42 - samples/sec: 2080.80 - lr: 0.000000 - momentum: 0.000000 2023-10-13 14:16:34,441 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:16:34,441 EPOCH 10 done: loss 0.0051 - lr: 0.000000 2023-10-13 14:16:43,026 DEV : loss 0.2595662772655487 - f1-score (micro avg) 0.7736 2023-10-13 14:16:43,057 saving best model 2023-10-13 14:16:44,098 ---------------------------------------------------------------------------------------------------- 2023-10-13 14:16:44,100 Loading model from best epoch ... 2023-10-13 14:16:45,623 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-10-13 14:16:50,883 Results: - F-score (micro) 0.7347 - F-score (macro) 0.6609 - Accuracy 0.5974 By class: precision recall f1-score support loc 0.8176 0.8423 0.8298 596 pers 0.6575 0.7147 0.6849 333 org 0.5225 0.4394 0.4774 132 prod 0.6522 0.4545 0.5357 66 time 0.7407 0.8163 0.7767 49 micro avg 0.7313 0.7381 0.7347 1176 macro avg 0.6781 0.6535 0.6609 1176 weighted avg 0.7266 0.7381 0.7305 1176 2023-10-13 14:16:50,883 ----------------------------------------------------------------------------------------------------