2023-10-13 12:00:27,065 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Train: 3575 sentences 2023-10-13 12:00:27,066 (train_with_dev=False, train_with_test=False) 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Training Params: 2023-10-13 12:00:27,066 - learning_rate: "5e-05" 2023-10-13 12:00:27,066 - mini_batch_size: "4" 2023-10-13 12:00:27,066 - max_epochs: "10" 2023-10-13 12:00:27,066 - shuffle: "True" 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Plugins: 2023-10-13 12:00:27,066 - LinearScheduler | warmup_fraction: '0.1' 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Final evaluation on model from best epoch (best-model.pt) 2023-10-13 12:00:27,066 - metric: "('micro avg', 'f1-score')" 2023-10-13 12:00:27,066 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,066 Computation: 2023-10-13 12:00:27,067 - compute on device: cuda:0 2023-10-13 12:00:27,067 - embedding storage: none 2023-10-13 12:00:27,067 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,067 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" 2023-10-13 12:00:27,067 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:27,067 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:00:31,356 epoch 1 - iter 89/894 - loss 2.65202089 - time (sec): 4.29 - samples/sec: 2230.44 - lr: 0.000005 - momentum: 0.000000 2023-10-13 12:00:35,325 epoch 1 - iter 178/894 - loss 1.69966045 - time (sec): 8.26 - samples/sec: 2125.46 - lr: 0.000010 - momentum: 0.000000 2023-10-13 12:00:39,217 epoch 1 - iter 267/894 - loss 1.30319450 - time (sec): 12.15 - samples/sec: 2082.04 - lr: 0.000015 - momentum: 0.000000 2023-10-13 12:00:43,289 epoch 1 - iter 356/894 - loss 1.06401462 - time (sec): 16.22 - samples/sec: 2087.13 - lr: 0.000020 - momentum: 0.000000 2023-10-13 12:00:47,424 epoch 1 - iter 445/894 - loss 0.91793285 - time (sec): 20.36 - samples/sec: 2064.05 - lr: 0.000025 - momentum: 0.000000 2023-10-13 12:00:51,643 epoch 1 - iter 534/894 - loss 0.80690184 - time (sec): 24.58 - samples/sec: 2073.01 - lr: 0.000030 - momentum: 0.000000 2023-10-13 12:00:55,771 epoch 1 - iter 623/894 - loss 0.72960178 - time (sec): 28.70 - samples/sec: 2074.20 - lr: 0.000035 - momentum: 0.000000 2023-10-13 12:01:00,063 epoch 1 - iter 712/894 - loss 0.66121317 - time (sec): 33.00 - samples/sec: 2095.23 - lr: 0.000040 - momentum: 0.000000 2023-10-13 12:01:04,132 epoch 1 - iter 801/894 - loss 0.61592548 - time (sec): 37.06 - samples/sec: 2080.65 - lr: 0.000045 - momentum: 0.000000 2023-10-13 12:01:08,647 epoch 1 - iter 890/894 - loss 0.57823314 - time (sec): 41.58 - samples/sec: 2070.70 - lr: 0.000050 - momentum: 0.000000 2023-10-13 12:01:08,863 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:01:08,863 EPOCH 1 done: loss 0.5761 - lr: 0.000050 2023-10-13 12:01:14,125 DEV : loss 0.19171087443828583 - f1-score (micro avg) 0.5523 2023-10-13 12:01:14,162 saving best model 2023-10-13 12:01:14,561 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:01:19,169 epoch 2 - iter 89/894 - loss 0.16742899 - time (sec): 4.61 - samples/sec: 1876.18 - lr: 0.000049 - momentum: 0.000000 2023-10-13 12:01:24,154 epoch 2 - iter 178/894 - loss 0.18661985 - time (sec): 9.59 - samples/sec: 1799.79 - lr: 0.000049 - momentum: 0.000000 2023-10-13 12:01:28,900 epoch 2 - iter 267/894 - loss 0.18491634 - time (sec): 14.34 - samples/sec: 1810.30 - lr: 0.000048 - momentum: 0.000000 2023-10-13 12:01:33,617 epoch 2 - iter 356/894 - loss 0.17699142 - time (sec): 19.05 - samples/sec: 1803.39 - lr: 0.000048 - momentum: 0.000000 2023-10-13 12:01:38,281 epoch 2 - iter 445/894 - loss 0.17304819 - time (sec): 23.72 - samples/sec: 1787.25 - lr: 0.000047 - momentum: 0.000000 2023-10-13 12:01:43,059 epoch 2 - iter 534/894 - loss 0.16781167 - time (sec): 28.50 - samples/sec: 1795.31 - lr: 0.000047 - momentum: 0.000000 2023-10-13 12:01:47,846 epoch 2 - iter 623/894 - loss 0.16699818 - time (sec): 33.28 - samples/sec: 1814.02 - lr: 0.000046 - momentum: 0.000000 2023-10-13 12:01:51,935 epoch 2 - iter 712/894 - loss 0.16546982 - time (sec): 37.37 - samples/sec: 1837.50 - lr: 0.000046 - momentum: 0.000000 2023-10-13 12:01:56,087 epoch 2 - iter 801/894 - loss 0.16583765 - time (sec): 41.52 - samples/sec: 1849.52 - lr: 0.000045 - momentum: 0.000000 2023-10-13 12:02:00,492 epoch 2 - iter 890/894 - loss 0.16396919 - time (sec): 45.93 - samples/sec: 1877.86 - lr: 0.000044 - momentum: 0.000000 2023-10-13 12:02:00,666 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:02:00,666 EPOCH 2 done: loss 0.1637 - lr: 0.000044 2023-10-13 12:02:09,259 DEV : loss 0.1673235297203064 - f1-score (micro avg) 0.6731 2023-10-13 12:02:09,287 saving best model 2023-10-13 12:02:09,740 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:02:14,071 epoch 3 - iter 89/894 - loss 0.11293528 - time (sec): 4.32 - samples/sec: 1806.55 - lr: 0.000044 - momentum: 0.000000 2023-10-13 12:02:18,083 epoch 3 - iter 178/894 - loss 0.09808312 - time (sec): 8.34 - samples/sec: 1941.24 - lr: 0.000043 - momentum: 0.000000 2023-10-13 12:02:22,186 epoch 3 - iter 267/894 - loss 0.10487395 - time (sec): 12.44 - samples/sec: 1958.54 - lr: 0.000043 - momentum: 0.000000 2023-10-13 12:02:26,519 epoch 3 - iter 356/894 - loss 0.09664391 - time (sec): 16.77 - samples/sec: 1981.81 - lr: 0.000042 - momentum: 0.000000 2023-10-13 12:02:31,084 epoch 3 - iter 445/894 - loss 0.09801920 - time (sec): 21.34 - samples/sec: 1989.82 - lr: 0.000042 - momentum: 0.000000 2023-10-13 12:02:35,161 epoch 3 - iter 534/894 - loss 0.09498912 - time (sec): 25.41 - samples/sec: 2021.14 - lr: 0.000041 - momentum: 0.000000 2023-10-13 12:02:39,416 epoch 3 - iter 623/894 - loss 0.09310128 - time (sec): 29.67 - samples/sec: 2021.67 - lr: 0.000041 - momentum: 0.000000 2023-10-13 12:02:43,736 epoch 3 - iter 712/894 - loss 0.09653710 - time (sec): 33.99 - samples/sec: 2015.81 - lr: 0.000040 - momentum: 0.000000 2023-10-13 12:02:47,930 epoch 3 - iter 801/894 - loss 0.09612514 - time (sec): 38.18 - samples/sec: 2015.52 - lr: 0.000039 - momentum: 0.000000 2023-10-13 12:02:52,340 epoch 3 - iter 890/894 - loss 0.09660086 - time (sec): 42.59 - samples/sec: 2024.95 - lr: 0.000039 - momentum: 0.000000 2023-10-13 12:02:52,514 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:02:52,514 EPOCH 3 done: loss 0.0964 - lr: 0.000039 2023-10-13 12:03:01,037 DEV : loss 0.1543554961681366 - f1-score (micro avg) 0.7237 2023-10-13 12:03:01,064 saving best model 2023-10-13 12:03:01,494 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:03:05,695 epoch 4 - iter 89/894 - loss 0.06872160 - time (sec): 4.20 - samples/sec: 2147.40 - lr: 0.000038 - momentum: 0.000000 2023-10-13 12:03:09,945 epoch 4 - iter 178/894 - loss 0.06523083 - time (sec): 8.45 - samples/sec: 2031.05 - lr: 0.000038 - momentum: 0.000000 2023-10-13 12:03:14,291 epoch 4 - iter 267/894 - loss 0.06233008 - time (sec): 12.80 - samples/sec: 2053.49 - lr: 0.000037 - momentum: 0.000000 2023-10-13 12:03:18,654 epoch 4 - iter 356/894 - loss 0.06329979 - time (sec): 17.16 - samples/sec: 2106.44 - lr: 0.000037 - momentum: 0.000000 2023-10-13 12:03:22,852 epoch 4 - iter 445/894 - loss 0.06037310 - time (sec): 21.36 - samples/sec: 2099.06 - lr: 0.000036 - momentum: 0.000000 2023-10-13 12:03:26,947 epoch 4 - iter 534/894 - loss 0.06290240 - time (sec): 25.45 - samples/sec: 2104.17 - lr: 0.000036 - momentum: 0.000000 2023-10-13 12:03:30,914 epoch 4 - iter 623/894 - loss 0.06194766 - time (sec): 29.42 - samples/sec: 2101.71 - lr: 0.000035 - momentum: 0.000000 2023-10-13 12:03:35,018 epoch 4 - iter 712/894 - loss 0.06159615 - time (sec): 33.52 - samples/sec: 2095.48 - lr: 0.000034 - momentum: 0.000000 2023-10-13 12:03:39,166 epoch 4 - iter 801/894 - loss 0.06291890 - time (sec): 37.67 - samples/sec: 2060.79 - lr: 0.000034 - momentum: 0.000000 2023-10-13 12:03:43,303 epoch 4 - iter 890/894 - loss 0.06248239 - time (sec): 41.81 - samples/sec: 2062.20 - lr: 0.000033 - momentum: 0.000000 2023-10-13 12:03:43,493 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:03:43,493 EPOCH 4 done: loss 0.0628 - lr: 0.000033 2023-10-13 12:03:51,962 DEV : loss 0.19826681911945343 - f1-score (micro avg) 0.7608 2023-10-13 12:03:51,990 saving best model 2023-10-13 12:03:52,464 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:03:57,042 epoch 5 - iter 89/894 - loss 0.05415502 - time (sec): 4.57 - samples/sec: 2124.39 - lr: 0.000033 - momentum: 0.000000 2023-10-13 12:04:01,786 epoch 5 - iter 178/894 - loss 0.05000802 - time (sec): 9.32 - samples/sec: 1905.31 - lr: 0.000032 - momentum: 0.000000 2023-10-13 12:04:06,621 epoch 5 - iter 267/894 - loss 0.05083210 - time (sec): 14.15 - samples/sec: 1878.52 - lr: 0.000032 - momentum: 0.000000 2023-10-13 12:04:11,213 epoch 5 - iter 356/894 - loss 0.04975196 - time (sec): 18.75 - samples/sec: 1850.66 - lr: 0.000031 - momentum: 0.000000 2023-10-13 12:04:15,475 epoch 5 - iter 445/894 - loss 0.04576638 - time (sec): 23.01 - samples/sec: 1900.36 - lr: 0.000031 - momentum: 0.000000 2023-10-13 12:04:19,525 epoch 5 - iter 534/894 - loss 0.04845092 - time (sec): 27.06 - samples/sec: 1939.73 - lr: 0.000030 - momentum: 0.000000 2023-10-13 12:04:23,737 epoch 5 - iter 623/894 - loss 0.04814231 - time (sec): 31.27 - samples/sec: 1941.02 - lr: 0.000029 - momentum: 0.000000 2023-10-13 12:04:28,002 epoch 5 - iter 712/894 - loss 0.04696082 - time (sec): 35.53 - samples/sec: 1955.02 - lr: 0.000029 - momentum: 0.000000 2023-10-13 12:04:32,196 epoch 5 - iter 801/894 - loss 0.04514786 - time (sec): 39.73 - samples/sec: 1956.95 - lr: 0.000028 - momentum: 0.000000 2023-10-13 12:04:36,300 epoch 5 - iter 890/894 - loss 0.04547050 - time (sec): 43.83 - samples/sec: 1966.57 - lr: 0.000028 - momentum: 0.000000 2023-10-13 12:04:36,493 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:04:36,493 EPOCH 5 done: loss 0.0453 - lr: 0.000028 2023-10-13 12:04:44,989 DEV : loss 0.2249317169189453 - f1-score (micro avg) 0.7558 2023-10-13 12:04:45,019 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:04:49,517 epoch 6 - iter 89/894 - loss 0.02250297 - time (sec): 4.50 - samples/sec: 1927.38 - lr: 0.000027 - momentum: 0.000000 2023-10-13 12:04:53,620 epoch 6 - iter 178/894 - loss 0.02755065 - time (sec): 8.60 - samples/sec: 1904.80 - lr: 0.000027 - momentum: 0.000000 2023-10-13 12:04:57,991 epoch 6 - iter 267/894 - loss 0.02537520 - time (sec): 12.97 - samples/sec: 1969.77 - lr: 0.000026 - momentum: 0.000000 2023-10-13 12:05:02,077 epoch 6 - iter 356/894 - loss 0.02778131 - time (sec): 17.06 - samples/sec: 2019.16 - lr: 0.000026 - momentum: 0.000000 2023-10-13 12:05:06,083 epoch 6 - iter 445/894 - loss 0.02565103 - time (sec): 21.06 - samples/sec: 1994.56 - lr: 0.000025 - momentum: 0.000000 2023-10-13 12:05:10,138 epoch 6 - iter 534/894 - loss 0.02415612 - time (sec): 25.12 - samples/sec: 2001.89 - lr: 0.000024 - momentum: 0.000000 2023-10-13 12:05:14,184 epoch 6 - iter 623/894 - loss 0.02615286 - time (sec): 29.16 - samples/sec: 1993.85 - lr: 0.000024 - momentum: 0.000000 2023-10-13 12:05:18,598 epoch 6 - iter 712/894 - loss 0.02606805 - time (sec): 33.58 - samples/sec: 2035.76 - lr: 0.000023 - momentum: 0.000000 2023-10-13 12:05:22,821 epoch 6 - iter 801/894 - loss 0.02757777 - time (sec): 37.80 - samples/sec: 2034.05 - lr: 0.000023 - momentum: 0.000000 2023-10-13 12:05:27,484 epoch 6 - iter 890/894 - loss 0.02680885 - time (sec): 42.46 - samples/sec: 2027.87 - lr: 0.000022 - momentum: 0.000000 2023-10-13 12:05:27,693 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:05:27,693 EPOCH 6 done: loss 0.0267 - lr: 0.000022 2023-10-13 12:05:36,241 DEV : loss 0.2265176773071289 - f1-score (micro avg) 0.761 2023-10-13 12:05:36,268 saving best model 2023-10-13 12:05:36,722 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:05:41,169 epoch 7 - iter 89/894 - loss 0.01241443 - time (sec): 4.45 - samples/sec: 1976.84 - lr: 0.000022 - momentum: 0.000000 2023-10-13 12:05:45,326 epoch 7 - iter 178/894 - loss 0.01280006 - time (sec): 8.60 - samples/sec: 1988.62 - lr: 0.000021 - momentum: 0.000000 2023-10-13 12:05:50,011 epoch 7 - iter 267/894 - loss 0.01410320 - time (sec): 13.29 - samples/sec: 2051.18 - lr: 0.000021 - momentum: 0.000000 2023-10-13 12:05:54,218 epoch 7 - iter 356/894 - loss 0.01506068 - time (sec): 17.50 - samples/sec: 2036.46 - lr: 0.000020 - momentum: 0.000000 2023-10-13 12:05:58,380 epoch 7 - iter 445/894 - loss 0.01802183 - time (sec): 21.66 - samples/sec: 2050.15 - lr: 0.000019 - momentum: 0.000000 2023-10-13 12:06:02,559 epoch 7 - iter 534/894 - loss 0.01957567 - time (sec): 25.84 - samples/sec: 2036.06 - lr: 0.000019 - momentum: 0.000000 2023-10-13 12:06:06,819 epoch 7 - iter 623/894 - loss 0.01864068 - time (sec): 30.10 - samples/sec: 2025.40 - lr: 0.000018 - momentum: 0.000000 2023-10-13 12:06:10,824 epoch 7 - iter 712/894 - loss 0.01838519 - time (sec): 34.10 - samples/sec: 2028.91 - lr: 0.000018 - momentum: 0.000000 2023-10-13 12:06:14,873 epoch 7 - iter 801/894 - loss 0.01897641 - time (sec): 38.15 - samples/sec: 2020.45 - lr: 0.000017 - momentum: 0.000000 2023-10-13 12:06:19,125 epoch 7 - iter 890/894 - loss 0.01885509 - time (sec): 42.40 - samples/sec: 2034.65 - lr: 0.000017 - momentum: 0.000000 2023-10-13 12:06:19,303 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:06:19,304 EPOCH 7 done: loss 0.0188 - lr: 0.000017 2023-10-13 12:06:27,833 DEV : loss 0.23773737251758575 - f1-score (micro avg) 0.7709 2023-10-13 12:06:27,862 saving best model 2023-10-13 12:06:28,338 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:06:32,884 epoch 8 - iter 89/894 - loss 0.01758360 - time (sec): 4.54 - samples/sec: 1907.50 - lr: 0.000016 - momentum: 0.000000 2023-10-13 12:06:37,227 epoch 8 - iter 178/894 - loss 0.01300323 - time (sec): 8.89 - samples/sec: 2000.63 - lr: 0.000016 - momentum: 0.000000 2023-10-13 12:06:41,456 epoch 8 - iter 267/894 - loss 0.01026527 - time (sec): 13.12 - samples/sec: 2049.43 - lr: 0.000015 - momentum: 0.000000 2023-10-13 12:06:45,592 epoch 8 - iter 356/894 - loss 0.00865146 - time (sec): 17.25 - samples/sec: 2112.95 - lr: 0.000014 - momentum: 0.000000 2023-10-13 12:06:49,491 epoch 8 - iter 445/894 - loss 0.01113562 - time (sec): 21.15 - samples/sec: 2087.22 - lr: 0.000014 - momentum: 0.000000 2023-10-13 12:06:53,684 epoch 8 - iter 534/894 - loss 0.01103381 - time (sec): 25.34 - samples/sec: 2076.68 - lr: 0.000013 - momentum: 0.000000 2023-10-13 12:06:58,224 epoch 8 - iter 623/894 - loss 0.01078598 - time (sec): 29.88 - samples/sec: 2063.56 - lr: 0.000013 - momentum: 0.000000 2023-10-13 12:07:02,633 epoch 8 - iter 712/894 - loss 0.01053832 - time (sec): 34.29 - samples/sec: 2039.31 - lr: 0.000012 - momentum: 0.000000 2023-10-13 12:07:06,832 epoch 8 - iter 801/894 - loss 0.01089148 - time (sec): 38.49 - samples/sec: 2028.88 - lr: 0.000012 - momentum: 0.000000 2023-10-13 12:07:10,958 epoch 8 - iter 890/894 - loss 0.01109678 - time (sec): 42.62 - samples/sec: 2022.12 - lr: 0.000011 - momentum: 0.000000 2023-10-13 12:07:11,139 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:07:11,139 EPOCH 8 done: loss 0.0110 - lr: 0.000011 2023-10-13 12:07:19,962 DEV : loss 0.23593451082706451 - f1-score (micro avg) 0.7892 2023-10-13 12:07:19,992 saving best model 2023-10-13 12:07:20,478 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:07:24,789 epoch 9 - iter 89/894 - loss 0.00628948 - time (sec): 4.30 - samples/sec: 1921.98 - lr: 0.000011 - momentum: 0.000000 2023-10-13 12:07:29,139 epoch 9 - iter 178/894 - loss 0.00390042 - time (sec): 8.65 - samples/sec: 2031.56 - lr: 0.000010 - momentum: 0.000000 2023-10-13 12:07:33,428 epoch 9 - iter 267/894 - loss 0.00644408 - time (sec): 12.94 - samples/sec: 2000.87 - lr: 0.000009 - momentum: 0.000000 2023-10-13 12:07:37,671 epoch 9 - iter 356/894 - loss 0.00542230 - time (sec): 17.18 - samples/sec: 2057.31 - lr: 0.000009 - momentum: 0.000000 2023-10-13 12:07:41,968 epoch 9 - iter 445/894 - loss 0.00725202 - time (sec): 21.48 - samples/sec: 2057.49 - lr: 0.000008 - momentum: 0.000000 2023-10-13 12:07:46,266 epoch 9 - iter 534/894 - loss 0.00698739 - time (sec): 25.78 - samples/sec: 2073.97 - lr: 0.000008 - momentum: 0.000000 2023-10-13 12:07:50,551 epoch 9 - iter 623/894 - loss 0.00633533 - time (sec): 30.06 - samples/sec: 2062.87 - lr: 0.000007 - momentum: 0.000000 2023-10-13 12:07:54,589 epoch 9 - iter 712/894 - loss 0.00588233 - time (sec): 34.10 - samples/sec: 2053.11 - lr: 0.000007 - momentum: 0.000000 2023-10-13 12:07:58,682 epoch 9 - iter 801/894 - loss 0.00614205 - time (sec): 38.19 - samples/sec: 2047.19 - lr: 0.000006 - momentum: 0.000000 2023-10-13 12:08:03,257 epoch 9 - iter 890/894 - loss 0.00729369 - time (sec): 42.77 - samples/sec: 2013.71 - lr: 0.000006 - momentum: 0.000000 2023-10-13 12:08:03,460 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:08:03,461 EPOCH 9 done: loss 0.0073 - lr: 0.000006 2023-10-13 12:08:11,860 DEV : loss 0.24528658390045166 - f1-score (micro avg) 0.7827 2023-10-13 12:08:11,887 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:08:15,936 epoch 10 - iter 89/894 - loss 0.00803708 - time (sec): 4.05 - samples/sec: 2170.54 - lr: 0.000005 - momentum: 0.000000 2023-10-13 12:08:20,177 epoch 10 - iter 178/894 - loss 0.00744826 - time (sec): 8.29 - samples/sec: 2017.30 - lr: 0.000004 - momentum: 0.000000 2023-10-13 12:08:24,447 epoch 10 - iter 267/894 - loss 0.00540126 - time (sec): 12.56 - samples/sec: 2013.04 - lr: 0.000004 - momentum: 0.000000 2023-10-13 12:08:28,584 epoch 10 - iter 356/894 - loss 0.00463210 - time (sec): 16.69 - samples/sec: 2041.58 - lr: 0.000003 - momentum: 0.000000 2023-10-13 12:08:32,819 epoch 10 - iter 445/894 - loss 0.00503189 - time (sec): 20.93 - samples/sec: 2066.56 - lr: 0.000003 - momentum: 0.000000 2023-10-13 12:08:37,002 epoch 10 - iter 534/894 - loss 0.00461758 - time (sec): 25.11 - samples/sec: 2079.27 - lr: 0.000002 - momentum: 0.000000 2023-10-13 12:08:41,295 epoch 10 - iter 623/894 - loss 0.00437106 - time (sec): 29.41 - samples/sec: 2072.49 - lr: 0.000002 - momentum: 0.000000 2023-10-13 12:08:45,312 epoch 10 - iter 712/894 - loss 0.00448286 - time (sec): 33.42 - samples/sec: 2070.88 - lr: 0.000001 - momentum: 0.000000 2023-10-13 12:08:49,472 epoch 10 - iter 801/894 - loss 0.00428854 - time (sec): 37.58 - samples/sec: 2051.98 - lr: 0.000001 - momentum: 0.000000 2023-10-13 12:08:53,712 epoch 10 - iter 890/894 - loss 0.00454052 - time (sec): 41.82 - samples/sec: 2060.73 - lr: 0.000000 - momentum: 0.000000 2023-10-13 12:08:53,895 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:08:53,895 EPOCH 10 done: loss 0.0045 - lr: 0.000000 2023-10-13 12:09:02,408 DEV : loss 0.25100380182266235 - f1-score (micro avg) 0.7943 2023-10-13 12:09:02,436 saving best model 2023-10-13 12:09:03,246 ---------------------------------------------------------------------------------------------------- 2023-10-13 12:09:03,247 Loading model from best epoch ... 2023-10-13 12:09:04,728 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-10-13 12:09:09,207 Results: - F-score (micro) 0.7421 - F-score (macro) 0.6478 - Accuracy 0.6085 By class: precision recall f1-score support loc 0.8375 0.8473 0.8424 596 pers 0.6768 0.7357 0.7050 333 org 0.5392 0.4167 0.4701 132 prod 0.5490 0.4242 0.4786 66 time 0.6964 0.7959 0.7429 49 micro avg 0.7428 0.7415 0.7421 1176 macro avg 0.6598 0.6440 0.6478 1176 weighted avg 0.7364 0.7415 0.7371 1176 2023-10-13 12:09:09,207 ----------------------------------------------------------------------------------------------------