--- license: apache-2.0 tags: - generated_from_trainer - summarization metrics: - rouge datasets: - stacked-summaries/stacked-samsum-1024 model-index: - name: flan-t5-large-stacked-samsum1024-WIP3 results: - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 47.6682 verified: true - name: ROUGE-2 type: rouge value: 23.3053 verified: true - name: ROUGE-L type: rouge value: 39.7678 verified: true - name: ROUGE-LSUM type: rouge value: 43.259 verified: true - name: loss type: loss value: 2.372586965560913 verified: true - name: gen_len type: gen_len value: 17.4237 verified: true --- # flan-t5-large-stacked-samsum-1024 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the `stacked-summaries/stacked-samsum-1024` dataset. It achieves the following results on the evaluation set: - Loss: 2.1311 - Rouge1: 58.1114 - Rouge2: 29.339 - Rougel: 44.7611 - Rougelsum: 54.2823 - Gen Len: 122.364 ## Model description More information needed ## Intended uses & limitations - max input/output is 1024 tokens - this is mostly a test because `samsum` is not exactly the best dataset for general purpose summarization ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 2 - seed: 2760 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1734 | 1.0 | 115 | 1.8751 | 57.9286 | 29.2743 | 44.7181 | 54.2295 | 122.123 | | 0.1098 | 2.0 | 230 | 2.1311 | 58.1114 | 29.339 | 44.7611 | 54.2823 | 122.364 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1