# coding=utf-8 # Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is based off the following work: # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py # https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py """ PyTorch StableLM-Alpha model. """ from typing import Optional, Tuple, Union import math import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from .configuration_stablelm_alpha import StableLMAlphaConfig logger = logging.get_logger(__name__) def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`.""" batch_size, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) class LayerNorm(nn.LayerNorm): def __init__(self, normalized_shape: torch.Size, bias: bool = True, **kwargs): r""" bias (`bool`, default = True): whether to use the bias term. """ super().__init__(normalized_shape, **kwargs) if not bias: self.bias = None class DecoderLayer(nn.Module): def __init__(self, config: StableLMAlphaConfig): super().__init__() self.norm = LayerNorm(config.hidden_size, eps=config.norm_eps) self.attention = Attention(config) self.mlp = MLP(config) def forward( self, hidden_states: Optional[torch.FloatTensor], attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states # Pre-Norm hidden_states = self.norm(hidden_states) # Self-Attention attn_output, attn_weights, present_key_value = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # Feed-forward mlp_output = self.mlp(hidden_states) hidden_states = residual + attn_output + mlp_output outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if use_cache: outputs += (present_key_value,) return outputs # hidden_states, (optional: attn_weights), (optional: present_key_value) class MLP(nn.Module): def __init__(self, config: StableLMAlphaConfig): super().__init__() hidden_size = config.hidden_size multiple_of = 256 ff_dim = int(8 * hidden_size / 3) intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of) self.gate_proj = nn.Linear(hidden_size, 2 * intermediate_size, bias=False) self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.act = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: ff, ff_gate = self.gate_proj(x).chunk(2, dim=-1) return self.out_proj(ff * self.act(ff_gate)) class RotaryEmbedding(nn.Module): def __init__( self, dim: int, max_position_embeddings: int, base: int = 10_000, device: Optional[torch.device] = None, ): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) def forward(self, x: torch.Tensor, seq_len: Optional[int] = None): # x: [batch_size, num_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype()) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) def rotate_half(x: torch.Tensor): """Rotates half the hidden dims of the input.""" x1, x2 = torch.chunk(x, 2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Attention(nn.Module): def __init__(self, config: StableLMAlphaConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings if self.hidden_size % self.num_heads != 0: raise ValueError( "`hidden_size` is not divisble by the number of attention heads! Make sure to update them" ) self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self._init_rope() def _init_rope(self): self.rotary_ndims = int(self.head_dim * self.config.rotary_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, max_position_embeddings=self.config.max_position_embeddings, base=self.config.rotary_emb_base, ) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, position_ids: torch.LongTensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: has_past_key_value = past_key_value is not None # Compute QKV # [batch_size, seq_len, (num_heads * 3 * head_dim)] qkv = self.qkv_proj(hidden_states) # [batch_size, seq_len, num_heads, 3 * head_dim] new_qkv_shape = qkv.size()[:-1] + (self.num_heads, 3 * self.head_dim) qkv = qkv.view(*new_qkv_shape) # 3 * [batch_size, num_heads, seq_len, head_dim] query = qkv[..., : self.head_dim].permute(0, 2, 1, 3) key = qkv[..., self.head_dim:(2 * self.head_dim)].permute(0, 2, 1, 3) value = qkv[..., (2 * self.head_dim):].permute(0, 2, 1, 3) # Compute rotary embeddings on rotary_ndims # [batch_size, num_heads, seq_len, rotary_ndims] query_rot = query[..., :self.rotary_ndims] query_pass = query[..., self.rotary_ndims:] key_rot = key[..., :self.rotary_ndims] key_pass = key[..., self.rotary_ndims:] # Compute token offset for rotary embeddings (when decoding) kv_seq_len = key.shape[-2] if has_past_key_value: kv_seq_len += past_key_value[0].shape[-2] # Add rotary embeddings to query and key cos, sin = self.rotary_emb(value, seq_len=kv_seq_len) query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # Concatenate rotary embeddings with pass-through query and key # [batch_size, num_heads, seq_len, head_dim] query = torch.cat((query, query_pass), dim=-1) key = torch.cat((key, key_pass), dim=-1) # Reuse past key-value states if has_past_key_value: key = torch.cat((past_key_value[0], key), dim=2) value = torch.cat((past_key_value[1], value), dim=2) present_key_value = (key, value) if use_cache else None # [batch_size, num_heads, seq_len, head_dim] query = query.transpose(1, 2).contiguous() key = key.transpose(1, 2).contiguous() value = value.transpose(1, 2).contiguous() # Compute attention softmax_scale = 1 / math.sqrt(self.head_dim) attn_scores = torch.einsum('bthd,bshd->bhts', query, key * softmax_scale) # Apply the attention mask if attention_mask is not None: attn_scores = attn_scores + attention_mask attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).to(query.dtype) attn_output = torch.einsum('bhts,bshd->bthd', attn_weights, value) # Merge heads attn_output = attn_output.reshape(attn_output.shape[0], attn_output.shape[1], -1) # Final linear projection attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, present_key_value def attention_mask_func(attention_scores: torch.Tensor, ltor_mask: torch.Tensor): attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min) return attention_scores class StableLMAlphaPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = StableLMAlphaConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value=False): if isinstance(module, StableLMAlphaModel): module.gradient_checkpointing = value def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """Make causal mask used for bi-directional self-attention.""" batch_size, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length) class StableLMAlphaModel(StableLMAlphaPreTrainedModel): def __init__(self, config: StableLMAlphaConfig): super().__init__(config) self.config = config self.embed = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.final_norm = LayerNorm(config.hidden_size, eps=config.norm_eps) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.embed def set_input_embeddings(self, value: nn.Module): self.embed = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask: torch.Tensor, input_shape: torch.Size, inputs_embeds: torch.Tensor, past_key_values_length: int, ): # Create causal mask # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = tuple([None] * self.config.num_hidden_layers) seq_length_with_past = seq_length else: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed(input_ids) # Attention mask. if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None present_key_values = () if use_cache else None for _, (decoder_layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # `None` for `use_cache` return module(*inputs, output_attentions, None) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, # `None` for `past_key_value` None, ) else: outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = outputs[0] if output_attentions: all_attentions = all_attentions + (outputs[1],) if use_cache: present_key_values += (outputs[2 if output_attentions else 1],) hidden_states = self.final_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states += (hidden_states,) present_key_values = present_key_values if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_attentions, ) class StableLMAlphaForCausalLM(StableLMAlphaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: StableLMAlphaConfig): super().__init__(config) self.transformer = StableLMAlphaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module): self.lm_head = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Example: ```python >>> from transformers import AutoTokenizer, StableLMAlphaForCausalLM, StableLMAlphaConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", trust_remote_code=True) >>> config = StableLMAlphaConfig.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2") >>> config.is_decoder = True >>> model = StableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithPast( loss=lm_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs ): # Cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # Create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # If `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "position_ids": position_ids, } ) return model_inputs def _reorder_cache(self, past_key_values: torch.Tensor, beam_idx: int): reordered_past = () for past_key_value in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in past_key_value[:2]) + past_key_value[2:], ) return reordered_past StableLMAlphaConfig.register_for_auto_class() StableLMAlphaForCausalLM.register_for_auto_class("AutoModelForCausalLM")