# coding=utf-8 # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch JapaneseStableLMAlpha model. """ from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from .configuration_japanese_stablelm_alpha import JapaneseStableLMAlphaConfig logger = logging.get_logger(__name__) class JapaneseStableLMAlphaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = JapaneseStableLMAlphaConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if module.bias is not None: module.bias.data.zero_() if module.weight is not None: module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, JapaneseStableLMAlphaModel): module.gradient_checkpointing = value class JapaneseStableLMAlphaModel(JapaneseStableLMAlphaPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_in def set_input_embeddings(self, value): self.embed_in = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.config.num_hidden_layers) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() # Attention mask. if attention_mask is not None: assert batch_size > 0, "batch_size has to be defined and > 0" attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for layer_past return module(*inputs, use_cache, None, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, position_ids, head_mask[i], ) else: outputs = layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class DecoderLayer(nn.Module): def __init__(self, config): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False, ) self.post_attention_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) self.attention = Attention(config) self.mlp = MLP(config) def forward( self, hidden_states: Optional[torch.FloatTensor], attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, layer_past: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, ): attention_layer_outputs = self.attention( self.input_layernorm(hidden_states), attention_mask=attention_mask, position_ids=position_ids, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights) outputs = attention_layer_outputs[1:] mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) hidden_states = hidden_states + mlp_output + attn_output if use_cache: outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights) else: outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights) return outputs class MLP(nn.Module): def __init__(self, config: JapaneseStableLMAlphaConfig): super().__init__() hidden_size = config.hidden_size multiple_of = 256 ff_dim = int(8 * hidden_size / 3) intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of) self.packed_input_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False) self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.act = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: ff, ff_gate = self.packed_input_proj(x).chunk(2, dim=-1) return self.out_proj(ff * self.act(ff_gate)) class RotaryEmbedding(torch.nn.Module): """Based on Tri Dao's XPos: https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/layers/rotary.py""" def __init__( self, dim: int, max_position_embeddings: int, base: int = 10_000, scale_base: int = 512, device: str = None ): super().__init__() self.dim = dim self.seq_len_cached = max_position_embeddings # Set up `inv_freq` term inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) self.register_buffer("inv_freq", inv_freq) # Set up `scale` term self.scale_base = scale_base scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale) # Seet up `cos..` and `sin...` cache terms t = torch.arange(self.seq_len_cached, device=device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) # freqs = torch.cat((freqs, freqs), dim=-1) seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device) power = (seq_range - self.seq_len_cached // 2) / self.scale_base scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1) # scale_cached = torch.cat((scale_cached, scale_cached), dim=-1) self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False) self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False) self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False) self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False) def forward(self, x, seq_len=None): if seq_len > self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim=-1) seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device) power = (seq_range - self.seq_len_cached // 2) / self.scale_base scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1) scale_cached = torch.cat((scale_cached, scale_cached), dim=-1) self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False) self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False) self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False) self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False) return ( self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...], self.cos_k_cached[:seq_len, ...], self.sin_k_cached[:seq_len, ...], ) def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids, cos_k=None, sin_k=None): """ q, k: [bs, num_heads, seq_len, rot_dim] cos, sin: [seq_len, rot_dim / 2] position_ids: [bs, seq_len] """ # print(f"q: {q.shape}, k: {k.shape}, cos: {cos.shape}, sin: {sin.shape}, position_ids: {position_ids.shape}") import einops cos = einops.repeat(cos, 's r -> s (2 r)') sin = einops.repeat(sin, 's r -> s (2 r)') cos_k = einops.repeat(cos_k, 's r -> s (2 r)') sin_k = einops.repeat(sin_k, 's r -> s (2 r)') cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim] cos_k = cos_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim] sin_k = sin_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos_k) + (rotate_half(k) * sin_k) return q_embed, k_embed class Attention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them" ) self.head_size = self.hidden_size // self.num_attention_heads max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) self.rotary_ndims = int(self.head_size * config.rotary_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, max_position_embeddings=config.max_position_embeddings, base=config.rotary_emb_base, scale_base=config.rotary_scale_base, ) self.register_buffer( "norm_factor", torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()), persistent=False, ) self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, position_ids: torch.LongTensor, head_mask: Optional[torch.FloatTensor] = None, layer_past: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ): has_layer_past = layer_past is not None # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query = qkv[..., : self.head_size].permute(0, 2, 1, 3) key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] query_pass = query[..., self.rotary_ndims :] key_rot = key[..., : self.rotary_ndims] key_pass = key[..., self.rotary_ndims :] # Compute token offset for rotary embeddings (when decoding) kv_seq_len = key.shape[-2] if has_layer_past: kv_seq_len += layer_past[0].shape[-2] # Add rotary embeddings to query and key # TODO: Check if using xpos cos, sin, cos_k, sin_k = self.rotary_emb(value, seq_len=kv_seq_len) query, key = apply_rotary_pos_emb( query_rot, key_rot, cos, sin, position_ids, cos_k=cos_k, sin_k=sin_k) query = torch.cat((query, query_pass), dim=-1) key = torch.cat((key, key_pass), dim=-1) # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) # Merge attn_head_size dim and num_attn_heads dim into hidden dim # [bs, seq_len, num_attention_heads, attn_head_size] attn_output = attn_output.permute(0, 2, 1, 3).contiguous() attn_output = attn_output.view(attn_output.size(0), attn_output.size(1), self.num_attention_heads * self.head_size) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( batch_size * num_attention_heads, query_length, key_length, dtype=query.dtype, device=key.device, ) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor), ) attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) mask_value = torch.finfo(attn_scores.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype, device=attn_scores.device) attn_scores = torch.where(causal_mask, attn_scores, mask_value) if attention_mask is not None: # Apply the attention mask attn_scores = attn_scores + attention_mask # NOTE: Upcast to float32 attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(value) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def attention_mask_func(attention_scores, ltor_mask): attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min) return attention_scores class JapaneseStableLMAlphaForCausalLM(JapaneseStableLMAlphaPreTrainedModel): _tied_weights_keys = ["embed_out.weight"] def __init__(self, config): super().__init__(config) self.transformer = JapaneseStableLMAlphaModel(config) self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.embed_out def set_output_embeddings(self, new_embeddings): self.embed_out = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Example: ```python >>> import torch >>> from transformers import LlamaTokenizer, JapaneseStableLMAlphaForCausalLM, JapaneseStableLMAlphaConfig >>> tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1") >>> config = JapaneseStableLMAlphaConfig.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b") >>> config.is_decoder = True >>> model = JapaneseStableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b", config=config, trust_remote_code=True) >>> inputs = tokenizer("日本語の美しいところは、", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): input_shape = input_ids.shape # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "position_ids": position_ids, } ) return model_inputs def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past