--- license: mit --- This is a NER model meant to be used to detect/extract citations from American legal documents. Ignore the widget on the model card page; see below for usage. ## How to Use the Model This model outputs token-level predictions, which should be processed as follows to obtain meaningful labels for each token: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import torch tokenizer = AutoTokenizer.from_pretrained("ss108/legal-citation-bert") model = AutoModelForTokenClassification.from_pretrained("ss108/legal-citation-bert") text = "Your example text here" inputs = tokenizer(text, return_tensors="pt", padding=True) outputs = model(**inputs) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) predicted_labels = [model.config.id2label[p.item()] for p in predictions[0]] for token, label in zip(tokens, predicted_labels): print(f"{token}: {label}")