sryu1 commited on
Commit
6023445
·
1 Parent(s): 54faf36

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **CartPole-v1**
25
+ This is a trained model of a **DQN** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ ```
40
+ # Download model and save it into the logs/ folder
41
+ python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga sryu1 -f logs/
42
+ python enjoy.py --algo dqn --env CartPole-v1 -f logs/
43
+ ```
44
+
45
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
46
+ ```
47
+ python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga sryu1 -f logs/
48
+ rl_zoo3 enjoy --algo dqn --env CartPole-v1 -f logs/
49
+ ```
50
+
51
+ ## Training (with the RL Zoo)
52
+ ```
53
+ python train.py --algo dqn --env CartPole-v1 -f logs/
54
+ # Upload the model and generate video (when possible)
55
+ python -m rl_zoo3.push_to_hub --algo dqn --env CartPole-v1 -f logs/ -orga sryu1
56
+ ```
57
+
58
+ ## Hyperparameters
59
+ ```python
60
+ OrderedDict([('batch_size', 64),
61
+ ('buffer_size', 100000),
62
+ ('exploration_final_eps', 0.04),
63
+ ('exploration_fraction', 0.16),
64
+ ('gamma', 0.99),
65
+ ('gradient_steps', 128),
66
+ ('learning_rate', 0.0023),
67
+ ('learning_starts', 1000),
68
+ ('n_timesteps', 50000.0),
69
+ ('policy', 'MlpPolicy'),
70
+ ('policy_kwargs', 'dict(net_arch=[256, 256])'),
71
+ ('target_update_interval', 10),
72
+ ('train_freq', 256),
73
+ ('normalize', False)])
74
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - CartPole-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs/
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2863598343
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - buffer_size
5
+ - 100000
6
+ - - exploration_final_eps
7
+ - 0.04
8
+ - - exploration_fraction
9
+ - 0.16
10
+ - - gamma
11
+ - 0.99
12
+ - - gradient_steps
13
+ - 128
14
+ - - learning_rate
15
+ - 0.0023
16
+ - - learning_starts
17
+ - 1000
18
+ - - n_timesteps
19
+ - 50000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256])
24
+ - - target_update_interval
25
+ - 10
26
+ - - train_freq
27
+ - 256
dqn-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e938eb3a70ce866961fa00630782089f4c73ddc1c45e28582eb180a4c39dbaa
3
+ size 1109969
dqn-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
dqn-CartPole-v1/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7fac440489d0>",
8
+ "_build": "<function DQNPolicy._build at 0x7fac44048a60>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fac44048af0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7fac44048b80>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7fac44048c10>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fac44048ca0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fac44048d30>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7fac43bc7420>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 4
30
+ ],
31
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
32
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
33
+ "bounded_below": "[ True True True True]",
34
+ "bounded_above": "[ True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 2,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 50176,
47
+ "_total_timesteps": 50000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 0,
50
+ "action_noise": null,
51
+ "start_time": 1671534893658669932,
52
+ "learning_rate": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/YtdzGPxQSIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "tensorboard_log": null,
57
+ "lr_schedule": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/YtdzGPxQSIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "_last_obs": null,
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAC5Roz0q8Pe7/xhBPAlcIr2UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
69
+ },
70
+ "_episode_num": 455,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": -0.0035199999999999676,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFiAAAAAAACMAWyUS2KMAXSUR0BJ+/BeokzHdX2UKGgGR0BYgAAAAAAAaAdLYmgIR0BKAwSJ0nw5dX2UKGgGR0BXwAAAAAAAaAdLX2gIR0BKNQo9cKPXdX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0BKPtrCWNWEdX2UKGgGR0BXwAAAAAAAaAdLX2gIR0BKdQbdadMCdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BKe+4smOU/dX2UKGgGR0BWgAAAAAAAaAdLWmgIR0BKoNLL6k6+dX2UKGgGR0BbQAAAAAAAaAdLbWgIR0BK1Bvze40/dX2UKGgGR0BzsAAAAAAAaAdNOwFoCEdASxb1uivgWXV9lChoBkdAaWAAAAAAAGgHS8toCEdAS1HTI/7iynV9lChoBkdAchAAAAAAAGgHTSEBaAhHQEuRR64UeuF1fZQoaAZHQEYAAAAAAABoB0ssaAhHQEuUW43FUAF1fZQoaAZHQFgAAAAAAABoB0tgaAhHQEubWAf+0gN1fZQoaAZHQCgAAAAAAABoB0sMaAhHQEvFvybx3FF1fZQoaAZHQHgwAAAAAABoB02DAWgIR0BMGSLhrFfidX2UKGgGR0BhgAAAAAAAaAdLjGgIR0BMZP2wmmcfdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BMZd+gDifhdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0BMbajN6gM+dX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BMbqc3EQ5FdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BMb9lEqlP8dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BMcM2WIGhVdX2UKGgGR0BbAAAAAAAAaAdLbGgIR0BMo2+PBBRidX2UKGgGR0BaQAAAAAAAaAdLaWgIR0BMqxN7BwdbdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BMrFANXo1UdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0BM3tknTiKjdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0BM6PAwfyPNdX2UKGgGR0BhQAAAAAAAaAdLimgIR0BNHjXOGCZndX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BNJYwRGtp3dX2UKGgGR0BZQAAAAAAAaAdLZWgIR0BNLODJ2dNGdX2UKGgGR0BZQAAAAAAAaAdLZWgIR0BNXzRplBhQdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0BNZbSiM5wPdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0BNliHh0hePdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0BNoAydnTRZdX2UKGgGR0BggAAAAAAAaAdLhGgIR0BN0yFoL5RCdX2UKGgGR0BnQAAAAAAAaAdLumgIR0BN4YAbQ1JldX2UKGgGR0BoIAAAAAAAaAdLwWgIR0BOGZu63AmBdX2UKGgGR0BqoAAAAAAAaAdL1WgIR0BOUrbxmTTwdX2UKGgGR0BsYAAAAAAAaAdL42gIR0BOjWv0RODbdX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BOlje9Ba9sdX2UKGgGR0BeQAAAAAAAaAdLeWgIR0BOyKMNtqHodX2UKGgGR0B2wAAAAAAAaAdNbAFoCEdATw0NUfgaWHV9lChoBkdAbCAAAAAAAGgHS+FoCEdAT0bCxeLNwHV9lChoBkdAdfAAAAAAAGgHTV8BaAhHQE+MOFQEZBN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQA/Ls8gZCdX2UKGgGR0B88AAAAAAAaAdNzwFoCEdAUD+EytV7yHV9lChoBkdAYKAAAAAAAGgHS4VoCEdAUFlirksBhnV9lChoBkdAcCAAAAAAAGgHTQIBaAhHQFB389wFTvR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQtfxhDw6RdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUPJMlC1JDnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFEvfWtlqah1fZQoaAZHQH9AAAAAAABoB030AWgIR0BRV6sZHd43dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUZRplBhQWXV9lChoBkdAYQAAAAAAAGgHS4hoCEdAUa4MWoFV1nV9lChoBkdAYSAAAAAAAGgHS4loCEdAUckU+LWI43V9lChoBkdAYSAAAAAAAGgHS4loCEdAUc3x6OYIB3V9lChoBkdAX0AAAAAAAGgHS31oCEdAUec6hg3Lm3V9lChoBkdAYuAAAAAAAGgHS5doCEdAUezK7qY7aXV9lChoBkdAYwAAAAAAAGgHS5hoCEdAUghR64UeuHV9lChoBkdAcvAAAAAAAGgHTS8BaAhHQFIpJAMUh3d1fZQoaAZHQGEAAAAAAABoB0uIaAhHQFIuKYiPhhp1fZQoaAZHQHrAAAAAAABoB02sAWgIR0BSZ8B+4LCvdX2UKGgGR0BhwAAAAAAAaAdLjmgIR0BSgsHryDqXdX2UKGgGR0B2sAAAAAAAaAdNawFoCEdAUqSt5le4TnV9lChoBkdAY0AAAAAAAGgHS5poCEdAUr7yDqW1MXV9lChoBkdAd2AAAAAAAGgHTXYBaAhHQFLgqG1x82J1fZQoaAZHQHHgAAAAAABoB00eAWgIR0BS/6jzqbBodX2UKGgGR0B9oAAAAAAAaAdN2gFoCEdAUzqxbB42THV9lChoBkdAZUAAAAAAAGgHS6poCEdAU1gcxTKkmHV9lChoBkdAfSAAAAAAAGgHTdIBaAhHQFOS/yoXKr91fZQoaAZHQH9AAAAAAABoB030AWgIR0BT0J0wJw85dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU/b1Gsmv4nV9lChoBkdAdOAAAAAAAGgHTU4BaAhHQFQs/RVp9JB1fZQoaAZHQDMAAAAAAABoB0sTaAhHQFQtpiI+GGp1fZQoaAZHQGAgAAAAAABoB0uBaAhHQFQyFMIu5Bl1fZQoaAZHQH7AAAAAAABoB03sAWgIR0BUba+vhZQpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVKmKJl8PWnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFTmGEwnH/91fZQoaAZHQFXAAAAAAABoB0tXaAhHQFT+OEdvKlp1fZQoaAZHQHwwAAAAAABoB03DAWgIR0BVJAV45cTrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVV98NQTEi3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFWbl0o0ALl1fZQoaAZHQGqgAAAAAABoB0vVaAhHQFW4hNdqtYB1fZQoaAZHQGHgAAAAAABoB0uPaAhHQFXTOaOPvKF1fZQoaAZHQGdAAAAAAABoB0u6aAhHQFXag+yJKrd1fZQoaAZHQGbAAAAAAABoB0u2aAhHQFX2DVYp2EF1fZQoaAZHQGUAAAAAAABoB0uoaAhHQFYR4yXUpd91fZQoaAZHQHTAAAAAAABoB01MAWgIR0BWMf0yxiXqdX2UKGgGR0BgIAAAAAAAaAdLgWgIR0BWS4iC8OCodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVnJfICEHuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFauOS4e9zx1fZQoaAZHQHMQAAAAAABoB00xAWgIR0BW4rqt5le4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVx5R1oxpL3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFdZXQMQVbl1fZQoaAZHQHXwAAAAAABoB01fAWgIR0BXejt9hJAddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAV7Z01ZTya3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFfx19v0h/11fZQoaAZHQH9AAAAAAABoB030AWgIR0BYLkdq+JxedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWGola8pTdnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFinYtg8bJh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BY4xR/EwWWdWUu"
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 24704,
83
+ "buffer_size": 1,
84
+ "batch_size": 64,
85
+ "learning_starts": 1000,
86
+ "tau": 1.0,
87
+ "gamma": 0.99,
88
+ "gradient_steps": 128,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fac4402f9d0>",
96
+ "add": "<function ReplayBuffer.add at 0x7fac4402fa60>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7fac4402faf0>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fac4402fb80>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7fac440b8990>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gAWVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg=="
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.04,
111
+ "exploration_fraction": 0.16,
112
+ "target_update_interval": 10,
113
+ "_n_calls": 50176,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.04,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+keuFHrhR7hZRSlGg3Rz/EeuFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
119
+ },
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": []
122
+ }
dqn-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8b0c071d6354b7a1adf45535c49541e7482fd2a1c159334acd7b33bc384f778
3
+ size 545711
dqn-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0b92eed740a94e3622b5355082302e924dafd579ad991a25dc86dd03f75a214
3
+ size 544769
dqn-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e185b22d2ce2911c1a57d5d0e36ab674980b5dbce9909b54c8ec86d73ab5d0f0
3
+ size 66157
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T11:18:09.780426"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db699fe1dd20c5b08df6c523867a51eca7a36d44976a8367c29435a0c1c69ad6
3
+ size 10150