srikarvar commited on
Commit
1faaf06
1 Parent(s): 75607b9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,679 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: srikarvar/fine_tuned_model_5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:560
42
+ - loss:MultipleNegativesRankingLoss
43
+ widget:
44
+ - source_sentence: The `num_steps` parameter is employed to indicate the quantity
45
+ of steps when preparing the recipe.
46
+ sentences:
47
+ - The `num_steps` parameter is used to specify the number of steps when preparing
48
+ the recipe.
49
+ - The `rename_fields` function creates a new form with fields renamed to provided
50
+ names.
51
+ - The main difference between a ProductList and an InventoryList is that a ProductList
52
+ provides random access to the items, while an InventoryList updates progressively
53
+ as you browse the list.
54
+ - source_sentence: The "extract" function creates a portion of the data without making
55
+ a copy, with the possibility to indicate an offset and size.
56
+ sentences:
57
+ - 'Sure! Here''s an example:'
58
+ - You can create a sauce by combining the ingredients and using the `with_stirring()`
59
+ function to mix them evenly.
60
+ - The "extract" function computes a zero-copy subset of the data, with the option
61
+ to specify an offset and length.
62
+ - source_sentence: The `iterate_folder` function cycles through files inside a folder.
63
+ sentences:
64
+ - You can find it in the latest version of the user manual. Click on the provided
65
+ link to access the main version.
66
+ - The `iterate_folder` function iterates over files within a folder.
67
+ - It is a guide on how to process any type of module.
68
+ - source_sentence: Technical descriptions of the framework’s APIs and modules can
69
+ be found in the reference section.
70
+ sentences:
71
+ - The `to_spreadsheet` method in the Plant class is used to convert the PlantData
72
+ to a `SpreadsheetRow` or `SpreadsheetTable`.
73
+ - Yes, there are technical details available in the reference section that explain
74
+ how the framework’s APIs and modules work.
75
+ - The `storage_dir` parameter is used to specify the directory to store ingredients.
76
+ - source_sentence: Once you have completed your library script, you can generate a
77
+ library card and submit it to the server.
78
+ sentences:
79
+ - Once your library script is ready, you can create a library card and upload it
80
+ to the server.
81
+ - It replaces the document's header.
82
+ - Many product formats are supported, including CSV, XML, JSON, image, and video
83
+ files.
84
+ model-index:
85
+ - name: SentenceTransformer based on srikarvar/fine_tuned_model_5
86
+ results:
87
+ - task:
88
+ type: information-retrieval
89
+ name: Information Retrieval
90
+ dataset:
91
+ name: e5 cogcache small refined
92
+ type: e5-cogcache-small-refined
93
+ metrics:
94
+ - type: cosine_accuracy@1
95
+ value: 0.9821428571428571
96
+ name: Cosine Accuracy@1
97
+ - type: cosine_accuracy@3
98
+ value: 0.9821428571428571
99
+ name: Cosine Accuracy@3
100
+ - type: cosine_accuracy@5
101
+ value: 1.0
102
+ name: Cosine Accuracy@5
103
+ - type: cosine_accuracy@10
104
+ value: 1.0
105
+ name: Cosine Accuracy@10
106
+ - type: cosine_precision@1
107
+ value: 0.9821428571428571
108
+ name: Cosine Precision@1
109
+ - type: cosine_precision@3
110
+ value: 0.3273809523809524
111
+ name: Cosine Precision@3
112
+ - type: cosine_precision@5
113
+ value: 0.19999999999999998
114
+ name: Cosine Precision@5
115
+ - type: cosine_precision@10
116
+ value: 0.09999999999999999
117
+ name: Cosine Precision@10
118
+ - type: cosine_recall@1
119
+ value: 0.9821428571428571
120
+ name: Cosine Recall@1
121
+ - type: cosine_recall@3
122
+ value: 0.9821428571428571
123
+ name: Cosine Recall@3
124
+ - type: cosine_recall@5
125
+ value: 1.0
126
+ name: Cosine Recall@5
127
+ - type: cosine_recall@10
128
+ value: 1.0
129
+ name: Cosine Recall@10
130
+ - type: cosine_ndcg@10
131
+ value: 0.9898335099655963
132
+ name: Cosine Ndcg@10
133
+ - type: cosine_mrr@10
134
+ value: 0.9866071428571429
135
+ name: Cosine Mrr@10
136
+ - type: cosine_map@100
137
+ value: 0.9866071428571429
138
+ name: Cosine Map@100
139
+ - type: dot_accuracy@1
140
+ value: 0.9821428571428571
141
+ name: Dot Accuracy@1
142
+ - type: dot_accuracy@3
143
+ value: 0.9821428571428571
144
+ name: Dot Accuracy@3
145
+ - type: dot_accuracy@5
146
+ value: 1.0
147
+ name: Dot Accuracy@5
148
+ - type: dot_accuracy@10
149
+ value: 1.0
150
+ name: Dot Accuracy@10
151
+ - type: dot_precision@1
152
+ value: 0.9821428571428571
153
+ name: Dot Precision@1
154
+ - type: dot_precision@3
155
+ value: 0.3273809523809524
156
+ name: Dot Precision@3
157
+ - type: dot_precision@5
158
+ value: 0.19999999999999998
159
+ name: Dot Precision@5
160
+ - type: dot_precision@10
161
+ value: 0.09999999999999999
162
+ name: Dot Precision@10
163
+ - type: dot_recall@1
164
+ value: 0.9821428571428571
165
+ name: Dot Recall@1
166
+ - type: dot_recall@3
167
+ value: 0.9821428571428571
168
+ name: Dot Recall@3
169
+ - type: dot_recall@5
170
+ value: 1.0
171
+ name: Dot Recall@5
172
+ - type: dot_recall@10
173
+ value: 1.0
174
+ name: Dot Recall@10
175
+ - type: dot_ndcg@10
176
+ value: 0.9898335099655963
177
+ name: Dot Ndcg@10
178
+ - type: dot_mrr@10
179
+ value: 0.9866071428571429
180
+ name: Dot Mrr@10
181
+ - type: dot_map@100
182
+ value: 0.9866071428571429
183
+ name: Dot Map@100
184
+ - type: cosine_accuracy@1
185
+ value: 0.9821428571428571
186
+ name: Cosine Accuracy@1
187
+ - type: cosine_accuracy@3
188
+ value: 0.9821428571428571
189
+ name: Cosine Accuracy@3
190
+ - type: cosine_accuracy@5
191
+ value: 1.0
192
+ name: Cosine Accuracy@5
193
+ - type: cosine_accuracy@10
194
+ value: 1.0
195
+ name: Cosine Accuracy@10
196
+ - type: cosine_precision@1
197
+ value: 0.9821428571428571
198
+ name: Cosine Precision@1
199
+ - type: cosine_precision@3
200
+ value: 0.3273809523809524
201
+ name: Cosine Precision@3
202
+ - type: cosine_precision@5
203
+ value: 0.19999999999999998
204
+ name: Cosine Precision@5
205
+ - type: cosine_precision@10
206
+ value: 0.09999999999999999
207
+ name: Cosine Precision@10
208
+ - type: cosine_recall@1
209
+ value: 0.9821428571428571
210
+ name: Cosine Recall@1
211
+ - type: cosine_recall@3
212
+ value: 0.9821428571428571
213
+ name: Cosine Recall@3
214
+ - type: cosine_recall@5
215
+ value: 1.0
216
+ name: Cosine Recall@5
217
+ - type: cosine_recall@10
218
+ value: 1.0
219
+ name: Cosine Recall@10
220
+ - type: cosine_ndcg@10
221
+ value: 0.9898335099655963
222
+ name: Cosine Ndcg@10
223
+ - type: cosine_mrr@10
224
+ value: 0.9866071428571429
225
+ name: Cosine Mrr@10
226
+ - type: cosine_map@100
227
+ value: 0.9866071428571429
228
+ name: Cosine Map@100
229
+ - type: dot_accuracy@1
230
+ value: 0.9821428571428571
231
+ name: Dot Accuracy@1
232
+ - type: dot_accuracy@3
233
+ value: 0.9821428571428571
234
+ name: Dot Accuracy@3
235
+ - type: dot_accuracy@5
236
+ value: 1.0
237
+ name: Dot Accuracy@5
238
+ - type: dot_accuracy@10
239
+ value: 1.0
240
+ name: Dot Accuracy@10
241
+ - type: dot_precision@1
242
+ value: 0.9821428571428571
243
+ name: Dot Precision@1
244
+ - type: dot_precision@3
245
+ value: 0.3273809523809524
246
+ name: Dot Precision@3
247
+ - type: dot_precision@5
248
+ value: 0.19999999999999998
249
+ name: Dot Precision@5
250
+ - type: dot_precision@10
251
+ value: 0.09999999999999999
252
+ name: Dot Precision@10
253
+ - type: dot_recall@1
254
+ value: 0.9821428571428571
255
+ name: Dot Recall@1
256
+ - type: dot_recall@3
257
+ value: 0.9821428571428571
258
+ name: Dot Recall@3
259
+ - type: dot_recall@5
260
+ value: 1.0
261
+ name: Dot Recall@5
262
+ - type: dot_recall@10
263
+ value: 1.0
264
+ name: Dot Recall@10
265
+ - type: dot_ndcg@10
266
+ value: 0.9898335099655963
267
+ name: Dot Ndcg@10
268
+ - type: dot_mrr@10
269
+ value: 0.9866071428571429
270
+ name: Dot Mrr@10
271
+ - type: dot_map@100
272
+ value: 0.9866071428571429
273
+ name: Dot Map@100
274
+ ---
275
+
276
+ # SentenceTransformer based on srikarvar/fine_tuned_model_5
277
+
278
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
279
+
280
+ ## Model Details
281
+
282
+ ### Model Description
283
+ - **Model Type:** Sentence Transformer
284
+ - **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) <!-- at revision 4e4dc22ad09f760a0a35c55d14d2f89ebe2d2ff2 -->
285
+ - **Maximum Sequence Length:** 512 tokens
286
+ - **Output Dimensionality:** 384 tokens
287
+ - **Similarity Function:** Cosine Similarity
288
+ - **Training Dataset:**
289
+ - json
290
+ <!-- - **Language:** Unknown -->
291
+ <!-- - **License:** Unknown -->
292
+
293
+ ### Model Sources
294
+
295
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
296
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
297
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
298
+
299
+ ### Full Model Architecture
300
+
301
+ ```
302
+ SentenceTransformer(
303
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
304
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
305
+ (2): Normalize()
306
+ )
307
+ ```
308
+
309
+ ## Usage
310
+
311
+ ### Direct Usage (Sentence Transformers)
312
+
313
+ First install the Sentence Transformers library:
314
+
315
+ ```bash
316
+ pip install -U sentence-transformers
317
+ ```
318
+
319
+ Then you can load this model and run inference.
320
+ ```python
321
+ from sentence_transformers import SentenceTransformer
322
+
323
+ # Download from the 🤗 Hub
324
+ model = SentenceTransformer("srikarvar/fine_tuned_model_10")
325
+ # Run inference
326
+ sentences = [
327
+ 'Once you have completed your library script, you can generate a library card and submit it to the server.',
328
+ 'Once your library script is ready, you can create a library card and upload it to the server.',
329
+ "It replaces the document's header.",
330
+ ]
331
+ embeddings = model.encode(sentences)
332
+ print(embeddings.shape)
333
+ # [3, 384]
334
+
335
+ # Get the similarity scores for the embeddings
336
+ similarities = model.similarity(embeddings, embeddings)
337
+ print(similarities.shape)
338
+ # [3, 3]
339
+ ```
340
+
341
+ <!--
342
+ ### Direct Usage (Transformers)
343
+
344
+ <details><summary>Click to see the direct usage in Transformers</summary>
345
+
346
+ </details>
347
+ -->
348
+
349
+ <!--
350
+ ### Downstream Usage (Sentence Transformers)
351
+
352
+ You can finetune this model on your own dataset.
353
+
354
+ <details><summary>Click to expand</summary>
355
+
356
+ </details>
357
+ -->
358
+
359
+ <!--
360
+ ### Out-of-Scope Use
361
+
362
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
363
+ -->
364
+
365
+ ## Evaluation
366
+
367
+ ### Metrics
368
+
369
+ #### Information Retrieval
370
+ * Dataset: `e5-cogcache-small-refined`
371
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
372
+
373
+ | Metric | Value |
374
+ |:--------------------|:-----------|
375
+ | cosine_accuracy@1 | 0.9821 |
376
+ | cosine_accuracy@3 | 0.9821 |
377
+ | cosine_accuracy@5 | 1.0 |
378
+ | cosine_accuracy@10 | 1.0 |
379
+ | cosine_precision@1 | 0.9821 |
380
+ | cosine_precision@3 | 0.3274 |
381
+ | cosine_precision@5 | 0.2 |
382
+ | cosine_precision@10 | 0.1 |
383
+ | cosine_recall@1 | 0.9821 |
384
+ | cosine_recall@3 | 0.9821 |
385
+ | cosine_recall@5 | 1.0 |
386
+ | cosine_recall@10 | 1.0 |
387
+ | cosine_ndcg@10 | 0.9898 |
388
+ | cosine_mrr@10 | 0.9866 |
389
+ | **cosine_map@100** | **0.9866** |
390
+ | dot_accuracy@1 | 0.9821 |
391
+ | dot_accuracy@3 | 0.9821 |
392
+ | dot_accuracy@5 | 1.0 |
393
+ | dot_accuracy@10 | 1.0 |
394
+ | dot_precision@1 | 0.9821 |
395
+ | dot_precision@3 | 0.3274 |
396
+ | dot_precision@5 | 0.2 |
397
+ | dot_precision@10 | 0.1 |
398
+ | dot_recall@1 | 0.9821 |
399
+ | dot_recall@3 | 0.9821 |
400
+ | dot_recall@5 | 1.0 |
401
+ | dot_recall@10 | 1.0 |
402
+ | dot_ndcg@10 | 0.9898 |
403
+ | dot_mrr@10 | 0.9866 |
404
+ | dot_map@100 | 0.9866 |
405
+
406
+ #### Information Retrieval
407
+ * Dataset: `e5-cogcache-small-refined`
408
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
409
+
410
+ | Metric | Value |
411
+ |:--------------------|:-----------|
412
+ | cosine_accuracy@1 | 0.9821 |
413
+ | cosine_accuracy@3 | 0.9821 |
414
+ | cosine_accuracy@5 | 1.0 |
415
+ | cosine_accuracy@10 | 1.0 |
416
+ | cosine_precision@1 | 0.9821 |
417
+ | cosine_precision@3 | 0.3274 |
418
+ | cosine_precision@5 | 0.2 |
419
+ | cosine_precision@10 | 0.1 |
420
+ | cosine_recall@1 | 0.9821 |
421
+ | cosine_recall@3 | 0.9821 |
422
+ | cosine_recall@5 | 1.0 |
423
+ | cosine_recall@10 | 1.0 |
424
+ | cosine_ndcg@10 | 0.9898 |
425
+ | cosine_mrr@10 | 0.9866 |
426
+ | **cosine_map@100** | **0.9866** |
427
+ | dot_accuracy@1 | 0.9821 |
428
+ | dot_accuracy@3 | 0.9821 |
429
+ | dot_accuracy@5 | 1.0 |
430
+ | dot_accuracy@10 | 1.0 |
431
+ | dot_precision@1 | 0.9821 |
432
+ | dot_precision@3 | 0.3274 |
433
+ | dot_precision@5 | 0.2 |
434
+ | dot_precision@10 | 0.1 |
435
+ | dot_recall@1 | 0.9821 |
436
+ | dot_recall@3 | 0.9821 |
437
+ | dot_recall@5 | 1.0 |
438
+ | dot_recall@10 | 1.0 |
439
+ | dot_ndcg@10 | 0.9898 |
440
+ | dot_mrr@10 | 0.9866 |
441
+ | dot_map@100 | 0.9866 |
442
+
443
+ <!--
444
+ ## Bias, Risks and Limitations
445
+
446
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
447
+ -->
448
+
449
+ <!--
450
+ ### Recommendations
451
+
452
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
453
+ -->
454
+
455
+ ## Training Details
456
+
457
+ ### Training Dataset
458
+
459
+ #### json
460
+
461
+ * Dataset: json
462
+ * Size: 560 training samples
463
+ * Columns: <code>anchor</code> and <code>positive</code>
464
+ * Approximate statistics based on the first 560 samples:
465
+ | | anchor | positive |
466
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
467
+ | type | string | string |
468
+ | details | <ul><li>min: 9 tokens</li><li>mean: 30.23 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 30.06 tokens</li><li>max: 98 tokens</li></ul> |
469
+ * Samples:
470
+ | anchor | positive |
471
+ |:---------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
472
+ | <code>It retrieves items from a list.</code> | <code>It selects items from a list.</code> |
473
+ | <code>The goal of seasoning a cast iron pan is to create a non-stick surface and protect it from rust.</code> | <code>The purpose of seasoning a cast iron pan is to create a non-stick surface and prevent rust.</code> |
474
+ | <code>The Spark manual covers topics like data analysis, machine learning, graph processing, and stream processing.</code> | <code>The Spark documentation covers topics such as data analysis, machine learning, graph processing, and stream processing.</code> |
475
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
476
+ ```json
477
+ {
478
+ "scale": 20.0,
479
+ "similarity_fct": "cos_sim"
480
+ }
481
+ ```
482
+
483
+ ### Training Hyperparameters
484
+ #### Non-Default Hyperparameters
485
+
486
+ - `eval_strategy`: epoch
487
+ - `per_device_train_batch_size`: 16
488
+ - `per_device_eval_batch_size`: 16
489
+ - `learning_rate`: 1e-05
490
+ - `warmup_ratio`: 0.1
491
+ - `batch_sampler`: no_duplicates
492
+
493
+ #### All Hyperparameters
494
+ <details><summary>Click to expand</summary>
495
+
496
+ - `overwrite_output_dir`: False
497
+ - `do_predict`: False
498
+ - `eval_strategy`: epoch
499
+ - `prediction_loss_only`: True
500
+ - `per_device_train_batch_size`: 16
501
+ - `per_device_eval_batch_size`: 16
502
+ - `per_gpu_train_batch_size`: None
503
+ - `per_gpu_eval_batch_size`: None
504
+ - `gradient_accumulation_steps`: 1
505
+ - `eval_accumulation_steps`: None
506
+ - `learning_rate`: 1e-05
507
+ - `weight_decay`: 0.0
508
+ - `adam_beta1`: 0.9
509
+ - `adam_beta2`: 0.999
510
+ - `adam_epsilon`: 1e-08
511
+ - `max_grad_norm`: 1.0
512
+ - `num_train_epochs`: 3
513
+ - `max_steps`: -1
514
+ - `lr_scheduler_type`: linear
515
+ - `lr_scheduler_kwargs`: {}
516
+ - `warmup_ratio`: 0.1
517
+ - `warmup_steps`: 0
518
+ - `log_level`: passive
519
+ - `log_level_replica`: warning
520
+ - `log_on_each_node`: True
521
+ - `logging_nan_inf_filter`: True
522
+ - `save_safetensors`: True
523
+ - `save_on_each_node`: False
524
+ - `save_only_model`: False
525
+ - `restore_callback_states_from_checkpoint`: False
526
+ - `no_cuda`: False
527
+ - `use_cpu`: False
528
+ - `use_mps_device`: False
529
+ - `seed`: 42
530
+ - `data_seed`: None
531
+ - `jit_mode_eval`: False
532
+ - `use_ipex`: False
533
+ - `bf16`: False
534
+ - `fp16`: False
535
+ - `fp16_opt_level`: O1
536
+ - `half_precision_backend`: auto
537
+ - `bf16_full_eval`: False
538
+ - `fp16_full_eval`: False
539
+ - `tf32`: None
540
+ - `local_rank`: 0
541
+ - `ddp_backend`: None
542
+ - `tpu_num_cores`: None
543
+ - `tpu_metrics_debug`: False
544
+ - `debug`: []
545
+ - `dataloader_drop_last`: False
546
+ - `dataloader_num_workers`: 0
547
+ - `dataloader_prefetch_factor`: None
548
+ - `past_index`: -1
549
+ - `disable_tqdm`: False
550
+ - `remove_unused_columns`: True
551
+ - `label_names`: None
552
+ - `load_best_model_at_end`: False
553
+ - `ignore_data_skip`: False
554
+ - `fsdp`: []
555
+ - `fsdp_min_num_params`: 0
556
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
557
+ - `fsdp_transformer_layer_cls_to_wrap`: None
558
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
559
+ - `deepspeed`: None
560
+ - `label_smoothing_factor`: 0.0
561
+ - `optim`: adamw_torch
562
+ - `optim_args`: None
563
+ - `adafactor`: False
564
+ - `group_by_length`: False
565
+ - `length_column_name`: length
566
+ - `ddp_find_unused_parameters`: None
567
+ - `ddp_bucket_cap_mb`: None
568
+ - `ddp_broadcast_buffers`: False
569
+ - `dataloader_pin_memory`: True
570
+ - `dataloader_persistent_workers`: False
571
+ - `skip_memory_metrics`: True
572
+ - `use_legacy_prediction_loop`: False
573
+ - `push_to_hub`: False
574
+ - `resume_from_checkpoint`: None
575
+ - `hub_model_id`: None
576
+ - `hub_strategy`: every_save
577
+ - `hub_private_repo`: False
578
+ - `hub_always_push`: False
579
+ - `gradient_checkpointing`: False
580
+ - `gradient_checkpointing_kwargs`: None
581
+ - `include_inputs_for_metrics`: False
582
+ - `eval_do_concat_batches`: True
583
+ - `fp16_backend`: auto
584
+ - `push_to_hub_model_id`: None
585
+ - `push_to_hub_organization`: None
586
+ - `mp_parameters`:
587
+ - `auto_find_batch_size`: False
588
+ - `full_determinism`: False
589
+ - `torchdynamo`: None
590
+ - `ray_scope`: last
591
+ - `ddp_timeout`: 1800
592
+ - `torch_compile`: False
593
+ - `torch_compile_backend`: None
594
+ - `torch_compile_mode`: None
595
+ - `dispatch_batches`: None
596
+ - `split_batches`: None
597
+ - `include_tokens_per_second`: False
598
+ - `include_num_input_tokens_seen`: False
599
+ - `neftune_noise_alpha`: None
600
+ - `optim_target_modules`: None
601
+ - `batch_eval_metrics`: False
602
+ - `batch_sampler`: no_duplicates
603
+ - `multi_dataset_batch_sampler`: proportional
604
+
605
+ </details>
606
+
607
+ ### Training Logs
608
+ | Epoch | Step | Training Loss | e5-cogcache-small-refined_cosine_map@100 |
609
+ |:------:|:----:|:-------------:|:----------------------------------------:|
610
+ | 0 | 0 | - | 0.9777 |
611
+ | 0.3125 | 10 | 0.0118 | - |
612
+ | 0.625 | 20 | 0.0025 | - |
613
+ | 0.9375 | 30 | 0.006 | - |
614
+ | 1.0 | 32 | - | 0.9866 |
615
+ | 1.25 | 40 | 0.0008 | - |
616
+ | 1.5625 | 50 | 0.0005 | - |
617
+ | 1.875 | 60 | 0.0011 | - |
618
+ | 2.0 | 64 | - | 0.9866 |
619
+ | 2.1875 | 70 | 0.0006 | - |
620
+ | 2.5 | 80 | 0.0003 | - |
621
+ | 2.8125 | 90 | 0.001 | - |
622
+ | 3.0 | 96 | - | 0.9866 |
623
+
624
+
625
+ ### Framework Versions
626
+ - Python: 3.10.12
627
+ - Sentence Transformers: 3.1.0
628
+ - Transformers: 4.41.2
629
+ - PyTorch: 2.1.2+cu121
630
+ - Accelerate: 0.34.2
631
+ - Datasets: 2.19.1
632
+ - Tokenizers: 0.19.1
633
+
634
+ ## Citation
635
+
636
+ ### BibTeX
637
+
638
+ #### Sentence Transformers
639
+ ```bibtex
640
+ @inproceedings{reimers-2019-sentence-bert,
641
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
642
+ author = "Reimers, Nils and Gurevych, Iryna",
643
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
644
+ month = "11",
645
+ year = "2019",
646
+ publisher = "Association for Computational Linguistics",
647
+ url = "https://arxiv.org/abs/1908.10084",
648
+ }
649
+ ```
650
+
651
+ #### MultipleNegativesRankingLoss
652
+ ```bibtex
653
+ @misc{henderson2017efficient,
654
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
655
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
656
+ year={2017},
657
+ eprint={1705.00652},
658
+ archivePrefix={arXiv},
659
+ primaryClass={cs.CL}
660
+ }
661
+ ```
662
+
663
+ <!--
664
+ ## Glossary
665
+
666
+ *Clearly define terms in order to be accessible across audiences.*
667
+ -->
668
+
669
+ <!--
670
+ ## Model Card Authors
671
+
672
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
673
+ -->
674
+
675
+ <!--
676
+ ## Model Card Contact
677
+
678
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
679
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "srikarvar/fine_tuned_model_5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0dacc160f72cec9c011c32658a6bc6548a52fd74e3f98c7ad68fc7be4a666b1
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }