--- language: - mn license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: xlm-roberta-large model-index: - name: mongolian-xlm-roberta-large-ner results: [] --- # mongolian-xlm-roberta-large-ner This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1256 - Precision: 0.9361 - Recall: 0.9423 - F1: 0.9392 - Accuracy: 0.9824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1837 | 1.0 | 477 | 0.0939 | 0.8524 | 0.8895 | 0.8705 | 0.9745 | | 0.0736 | 2.0 | 954 | 0.0731 | 0.9318 | 0.9370 | 0.9344 | 0.9809 | | 0.0525 | 3.0 | 1431 | 0.0724 | 0.9244 | 0.9311 | 0.9278 | 0.9795 | | 0.036 | 4.0 | 1908 | 0.0807 | 0.9312 | 0.9409 | 0.9361 | 0.9819 | | 0.0248 | 5.0 | 2385 | 0.0855 | 0.9314 | 0.9407 | 0.9360 | 0.9814 | | 0.0163 | 6.0 | 2862 | 0.1014 | 0.9327 | 0.9397 | 0.9362 | 0.9815 | | 0.0112 | 7.0 | 3339 | 0.0997 | 0.9354 | 0.9433 | 0.9393 | 0.9822 | | 0.0064 | 8.0 | 3816 | 0.1171 | 0.9384 | 0.9432 | 0.9408 | 0.9824 | | 0.0049 | 9.0 | 4293 | 0.1237 | 0.9355 | 0.9418 | 0.9387 | 0.9822 | | 0.0024 | 10.0 | 4770 | 0.1256 | 0.9361 | 0.9423 | 0.9392 | 0.9824 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3