from typing import Dict from transformers.pipelines.audio_utils import ffmpeg_read import whisper import torch SAMPLE_RATE = 16000 class EndpointHandler(): def __init__(self, path=""): # load the model self.model = whisper.load_model("large-v3") def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]: """ Args: data (:obj:): includes the deserialized audio file as bytes Return: A :obj:`dict`:. base64 encoded image """ # process input inputs = data.pop("inputs", data) audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE) audio_tensor= torch.from_numpy(audio_nparray) # run inference pipeline result = self.model.transcribe(audio_nparray) # postprocess the prediction return {"text": result["text"]}