--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: model2024-08-28 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.90848026868178 --- # model2024-08-28 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7492 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.95 | 9 | 1.0556 | 0.8984 | | 1.0821 | 2.0 | 19 | 0.9629 | 0.9261 | | 1.0124 | 2.95 | 28 | 0.8606 | 0.9144 | | 0.9101 | 4.0 | 38 | 0.7704 | 0.9127 | | 0.8145 | 4.74 | 45 | 0.7492 | 0.9085 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2