--- library_name: transformers license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: bart-large-cnn-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4139 --- # bart-large-cnn-samsum This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.3028 - Rouge1: 0.4139 - Rouge2: 0.2105 - Rougel: 0.3191 - Rougelsum: 0.3193 - Gen Len: 60.0134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.9128 | 0.4344 | 100 | 0.3621 | 0.3984 | 0.1999 | 0.3038 | 0.3038 | 60.8888 | | 0.3205 | 0.8689 | 200 | 0.3097 | 0.4102 | 0.2138 | 0.3186 | 0.3188 | 60.6345 | | 0.2702 | 1.3033 | 300 | 0.3041 | 0.4159 | 0.211 | 0.3179 | 0.3179 | 60.077 | | 0.251 | 1.7377 | 400 | 0.2964 | 0.4191 | 0.2154 | 0.3229 | 0.3233 | 59.9022 | | 0.2262 | 2.1721 | 500 | 0.3055 | 0.4135 | 0.208 | 0.3178 | 0.3179 | 60.4132 | | 0.1906 | 2.6066 | 600 | 0.3028 | 0.4139 | 0.2105 | 0.3191 | 0.3193 | 60.0134 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1