--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: torgo-whisper-lg-3-Nov3 results: [] --- # torgo-whisper-lg-3-Nov3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0877 - Wer: 5.6146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.2844 | 0.3190 | 100 | 0.3944 | 28.6798 | | 0.2992 | 0.6380 | 200 | 0.2182 | 17.4507 | | 0.197 | 0.9569 | 300 | 0.1986 | 13.6571 | | 0.1299 | 1.2759 | 400 | 0.1599 | 12.5190 | | 0.1001 | 1.5949 | 500 | 0.1700 | 12.2155 | | 0.1038 | 1.9139 | 600 | 0.1407 | 9.1806 | | 0.0728 | 2.2329 | 700 | 0.1351 | 9.6358 | | 0.0652 | 2.5518 | 800 | 0.1090 | 7.9666 | | 0.0529 | 2.8708 | 900 | 0.1168 | 8.1942 | | 0.0338 | 3.1898 | 1000 | 0.1132 | 6.8285 | | 0.0358 | 3.5088 | 1100 | 0.0980 | 6.9044 | | 0.0381 | 3.8278 | 1200 | 0.0820 | 6.7527 | | 0.0245 | 4.1467 | 1300 | 0.0862 | 5.2352 | | 0.0299 | 4.4657 | 1400 | 0.1068 | 5.9181 | | 0.0261 | 4.7847 | 1500 | 0.0937 | 6.4492 | | 0.0205 | 5.1037 | 1600 | 0.1019 | 7.2838 | | 0.017 | 5.4226 | 1700 | 0.0990 | 5.6904 | | 0.0115 | 5.7416 | 1800 | 0.0842 | 5.6146 | | 0.018 | 6.0606 | 1900 | 0.1041 | 5.6904 | | 0.0112 | 6.3796 | 2000 | 0.1135 | 7.1320 | | 0.0174 | 6.6986 | 2100 | 0.0939 | 5.0835 | | 0.0117 | 7.0175 | 2200 | 0.1092 | 5.9181 | | 0.0121 | 7.3365 | 2300 | 0.0931 | 5.4628 | | 0.0075 | 7.6555 | 2400 | 0.0974 | 5.6146 | | 0.013 | 7.9745 | 2500 | 0.1142 | 5.7663 | | 0.0063 | 8.2935 | 2600 | 0.1108 | 6.1457 | | 0.0122 | 8.6124 | 2700 | 0.0929 | 5.6146 | | 0.0125 | 8.9314 | 2800 | 0.0905 | 5.6146 | | 0.0132 | 9.2504 | 2900 | 0.1202 | 6.1457 | | 0.0132 | 9.5694 | 3000 | 0.0925 | 5.0835 | | 0.0087 | 9.8884 | 3100 | 0.1028 | 5.0835 | | 0.0043 | 10.2073 | 3200 | 0.0997 | 5.6146 | | 0.004 | 10.5263 | 3300 | 0.0955 | 5.0835 | | 0.007 | 10.8453 | 3400 | 0.0915 | 5.1593 | | 0.0072 | 11.1643 | 3500 | 0.0814 | 5.3869 | | 0.0069 | 11.4833 | 3600 | 0.0887 | 4.7800 | | 0.0082 | 11.8022 | 3700 | 0.0940 | 5.6904 | | 0.0105 | 12.1212 | 3800 | 0.0936 | 5.2352 | | 0.0039 | 12.4402 | 3900 | 0.0966 | 5.3869 | | 0.002 | 12.7592 | 4000 | 0.0820 | 4.7800 | | 0.0032 | 13.0781 | 4100 | 0.0916 | 5.0835 | | 0.0009 | 13.3971 | 4200 | 0.0877 | 5.6146 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1