First model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 158.97 +/- 104.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f890e616c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f890e616ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f890e616d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f890e616dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f890e616e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f890e616ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f890e616f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f890e61c040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f890e61c0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f890e61c160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f890e61c1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f890e61c280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f890e617570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677906629471648535, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrwpz1sNO8+oiCpvezTCr4d8Me9OzmcvQAAAAAAAAAA5tEOv9IW9b2I7k287UU2uksVMTzRR4M7AACAPwAAgD+6AlO+c5gJP+arib3uQQG/H5y7OufOxT0AAAAAAAAAAMYCe77wb/4+4y88PprlAb+OTA08vrbzuwAAAAAAAAAAVk+2PjaSc7wug/47I9w/uq/xqL2zWfe6AACAPwAAgD8arcO9KSg3umHgkTutVeI2RpGSuRqm0zUAAIA/AACAP+b+7D32AF26SRENvANTFThC5qA7QMgPOQAAgD8AAIA/CDGBvviA1DyP8Q47R/yyuURhar6TNEK6AACAPwAAgD9mZdy9F/tDP3Ab6D0rxM++/hlJvuJGJD4AAAAAAAAAABPthT5Ejv4+6mapvcJuk75B1OY9RcFROgAAAAAAAAAABQcKP02gRT6NaZ88ORYPuZRn1D3o2ga8AACAPwAAgD8zpna9rgv1Psy/jr0ibJm+JhtlvT19i70AAAAAAAAAAHrjw77xOJE9L00tOzdp1blbfmi+P6xMugAAgD8AAIA/bZlbvi5L1DvGMK67HrRyOV/Ber1KYM+4AACAPwAAgD8NUM+9hSOXueK0bbta01y2cZpLuvY3zzUAAIA/AACAP4CsFr1KhqE/6TqJvgze276SLMK8nqzzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIipElcyzfK0CUhpRSlIwBbJRL14wBdJRHQJEl0PkJa7p1fZQoaAZoCWgPQwjPSIRGsP1bQJSGlFKUaBVN6ANoFkdAkShrGm1pkHV9lChoBmgJaA9DCFjGhm72r1zAlIaUUpRoFU1KAWgWR0CRLMarmyPddX2UKGgGaAloD0MI5E1+i06hVUCUhpRSlGgVTegDaBZHQJEue7J4jbB1fZQoaAZoCWgPQwhcrROX48dBQJSGlFKUaBVLwGgWR0CRNL1BdD6WdX2UKGgGaAloD0MIzSGphZLkZ0CUhpRSlGgVTWUCaBZHQJE5yq1gH/t1fZQoaAZoCWgPQwh8CoDxDJhMQJSGlFKUaBVN6ANoFkdAkUEyPMjeK3V9lChoBmgJaA9DCJ9b6EoEFmJAlIaUUpRoFU3oA2gWR0CRSUOoYNy6dX2UKGgGaAloD0MItFcfD/2gYECUhpRSlGgVTegDaBZHQJFPnDXOGCZ1fZQoaAZoCWgPQwgDXmbYqEphQJSGlFKUaBVN6ANoFkdAkU/R51Ng0HV9lChoBmgJaA9DCJ0Te2ifl2NAlIaUUpRoFU3oA2gWR0CRUP8lolD4dX2UKGgGaAloD0MIS3fX2ZCaYUCUhpRSlGgVTegDaBZHQJFR1KqXF991fZQoaAZoCWgPQwinBprPubczQJSGlFKUaBVL0mgWR0CRUmNzKcNIdX2UKGgGaAloD0MI2qhOB7JtYUCUhpRSlGgVTegDaBZHQJFXvYBeXzF1fZQoaAZoCWgPQwgbhLndy3hWQJSGlFKUaBVN6ANoFkdAkVjSuloDgnV9lChoBmgJaA9DCEyKj0/Ijvm/lIaUUpRoFUvmaBZHQJFcuN70Fr51fZQoaAZoCWgPQwgsf74tWOo4QJSGlFKUaBVLwWgWR0CRXS90A93bdX2UKGgGaAloD0MIppwv9l4DYECUhpRSlGgVTegDaBZHQJFdP8k2P1d1fZQoaAZoCWgPQwhYjSWsjUVKQJSGlFKUaBVL3mgWR0CRXXQvHtF8dX2UKGgGaAloD0MIdF/ObFe4WkCUhpRSlGgVTegDaBZHQJFxr2GqPwN1fZQoaAZoCWgPQwioqtBALA1AwJSGlFKUaBVLzmgWR0CRd9SVGCqZdX2UKGgGaAloD0MIJbGk3H1RWkCUhpRSlGgVTegDaBZHQJF6zPGACnx1fZQoaAZoCWgPQwhR24ZREB1aQJSGlFKUaBVN6ANoFkdAkYFKzZ6D5HV9lChoBmgJaA9DCH0IqkavEEVAlIaUUpRoFUvkaBZHQJGH7HwPRRd1fZQoaAZoCWgPQwjUYvAw7YNUQJSGlFKUaBVN6ANoFkdAkYhRjJ+2E3V9lChoBmgJaA9DCEbvVMC9bmFAlIaUUpRoFU3oA2gWR0CRidhib2DhdX2UKGgGaAloD0MIxMw+j1HYZECUhpRSlGgVTegDaBZHQJGPWxC6Ymd1fZQoaAZoCWgPQwhoWmJltJVlQJSGlFKUaBVN6ANoFkdAkZKkug6EJ3V9lChoBmgJaA9DCE35EFSNSjBAlIaUUpRoFUvlaBZHQJGVpK/VRUF1fZQoaAZoCWgPQwh64c6FkWY3QJSGlFKUaBVL42gWR0CRlxnSv1UVdX2UKGgGaAloD0MIHaz/cxiCYkCUhpRSlGgVTegDaBZHQJGcUqmTC+F1fZQoaAZoCWgPQwgPKQZItLJjQJSGlFKUaBVN6ANoFkdAkaJXtF8XvnV9lChoBmgJaA9DCNQMqaJ40THAlIaUUpRoFUu9aBZHQJGjljhDPWx1fZQoaAZoCWgPQwjRzJNrilRiQJSGlFKUaBVN6ANoFkdAkaRwBYFJQXV9lChoBmgJaA9DCOT1YFJ8wVtAlIaUUpRoFU3oA2gWR0CRrQsIVuaXdX2UKGgGaAloD0MIh4kGKXhqDUCUhpRSlGgVS85oFkdAkbHHHmzSkXV9lChoBmgJaA9DCDj0Fg/vAVxAlIaUUpRoFU3oA2gWR0CRs+GUwBYFdX2UKGgGaAloD0MIw4AlV7HTYkCUhpRSlGgVTegDaBZHQJG0o7xNIsl1fZQoaAZoCWgPQwgsD9JT5LxcQJSGlFKUaBVN6ANoFkdAkbTB91EE1XV9lChoBmgJaA9DCIFCPX0ER1VAlIaUUpRoFU3oA2gWR0CRtRiw0O3EdX2UKGgGaAloD0MIBYpYxLC3ZECUhpRSlGgVTegDaBZHQJG1fCtRvWJ1fZQoaAZoCWgPQwh8tDhjmHMOQJSGlFKUaBVL7mgWR0CRtk7sv7FbdX2UKGgGaAloD0MIlIjwL4I6UkCUhpRSlGgVTegDaBZHQJHTGEytV7x1fZQoaAZoCWgPQwjA54cRwtM5QJSGlFKUaBVL8WgWR0CR08pcX3xndX2UKGgGaAloD0MIzLVoAVpPZECUhpRSlGgVTegDaBZHQJHX1lAeJYV1fZQoaAZoCWgPQwjMJVXbTR5hQJSGlFKUaBVN6ANoFkdAkd5OkHlfZ3V9lChoBmgJaA9DCEikbfyJih3AlIaUUpRoFUvDaBZHQJHe0cjqv/11fZQoaAZoCWgPQwiBBMWPMUFeQJSGlFKUaBVN6ANoFkdAkeceOS4e93V9lChoBmgJaA9DCLYwC+0cDGNAlIaUUpRoFU3oA2gWR0CR7BoS+QEIdX2UKGgGaAloD0MILquwGeAC+7+UhpRSlGgVS9NoFkdAke5z8UEgXHV9lChoBmgJaA9DCCxIMxZNAzJAlIaUUpRoFUviaBZHQJHwg33pOet1fZQoaAZoCWgPQwjKwWwCjNJgQJSGlFKUaBVN6ANoFkdAkfCcAR02cnV9lChoBmgJaA9DCIpyafxCxGFAlIaUUpRoFU3oA2gWR0CR+bNhmXgMdX2UKGgGaAloD0MIF0m70UdUYECUhpRSlGgVTegDaBZHQJIBaixmkFh1fZQoaAZoCWgPQwhznUZaKixWQJSGlFKUaBVN6ANoFkdAkg5y4z7/GXV9lChoBmgJaA9DCKMBvAUSWWJAlIaUUpRoFU3oA2gWR0CSECYqG1x9dX2UKGgGaAloD0MI2QbuQB0TYkCUhpRSlGgVTegDaBZHQJIQvNJOFg51fZQoaAZoCWgPQwgM6IU7F2BaQJSGlFKUaBVN6ANoFkdAkhDa4lQdj3V9lChoBmgJaA9DCM0Bgjl6rV5AlIaUUpRoFU3oA2gWR0CSESAk9lmOdX2UKGgGaAloD0MIqaPjamSOW0CUhpRSlGgVTegDaBZHQJIRcGIKtxN1fZQoaAZoCWgPQwi9w+3QsHRcQJSGlFKUaBVN6ANoFkdAkhIdX9zfanV9lChoBmgJaA9DCCAkC5jAa1tAlIaUUpRoFU3oA2gWR0CSMp2uxKQJdX2UKGgGaAloD0MIbxEY6xugK0CUhpRSlGgVS9RoFkdAkjXwp4KQaXV9lChoBmgJaA9DCJgxBWscyWFAlIaUUpRoFU3oA2gWR0CSNoiXpnpTdX2UKGgGaAloD0MI5s+3BUu1PECUhpRSlGgVS/doFkdAkkCFpCa7VnV9lChoBmgJaA9DCAOV8e8zf1tAlIaUUpRoFU3oA2gWR0CSQ+fCyhSMdX2UKGgGaAloD0MIgqs8gTCKYECUhpRSlGgVTegDaBZHQJJHJEDyOJd1fZQoaAZoCWgPQwgiwyreyFlcQJSGlFKUaBVN6ANoFkdAkkitUsFt9HV9lChoBmgJaA9DCMkE/BrJtWJAlIaUUpRoFU3oA2gWR0CSSeiVjZtfdX2UKGgGaAloD0MIMNrjhXTwYkCUhpRSlGgVTegDaBZHQJJJ+ITGo751fZQoaAZoCWgPQwj+X3XkSONcQJSGlFKUaBVN6ANoFkdAkk7+mR/3FnV9lChoBmgJaA9DCNF0djI4Ii7AlIaUUpRoFUv2aBZHQJJU7oKUmlZ1fZQoaAZoCWgPQwjK+s3EdLdWQJSGlFKUaBVN6ANoFkdAklUnPzFuN3V9lChoBmgJaA9DCGTnbWx2TC1AlIaUUpRoFUvlaBZHQJJVUUwi7kJ1fZQoaAZoCWgPQwipvvOLEuVawJSGlFKUaBVNkgFoFkdAkljRNEgGKXV9lChoBmgJaA9DCAbaHVIM+V1AlIaUUpRoFU3oA2gWR0CSYIqur6tUdX2UKGgGaAloD0MIOBWpMLbgI0CUhpRSlGgVS7hoFkdAkmGj1GsmwHV9lChoBmgJaA9DCNGuQspPk2JAlIaUUpRoFU3oA2gWR0CSYlNjbzshdX2UKGgGaAloD0MIHF2lu+seYECUhpRSlGgVTegDaBZHQJJi8clw97p1fZQoaAZoCWgPQwhjYvNx7cZkQJSGlFKUaBVN6ANoFkdAkmMK6z3RHHV9lChoBmgJaA9DCNMuppnuOFtAlIaUUpRoFU3oA2gWR0CSY1eu3c59dX2UKGgGaAloD0MIOiF00CUmWkCUhpRSlGgVTegDaBZHQJJkexA0Kqp1fZQoaAZoCWgPQwjfbHNjeqI8wJSGlFKUaBVL3mgWR0CSfnh8IAwPdX2UKGgGaAloD0MIqTEh5pJKFMCUhpRSlGgVS6NoFkdAkoFVHz6JqXV9lChoBmgJaA9DCLOyfchbSl1AlIaUUpRoFU3oA2gWR0CShXAqNIbwdX2UKGgGaAloD0MI1UDzOXdrW0CUhpRSlGgVTegDaBZHQJKGDDZUT+N1fZQoaAZoCWgPQwgNiuYBrClhQJSGlFKUaBVN6ANoFkdAkpF2mUGFBnV9lChoBmgJaA9DCHQn2H+d6x9AlIaUUpRoFUvZaBZHQJKVHsa86FN1fZQoaAZoCWgPQwj20akrn1BfQJSGlFKUaBVN6ANoFkdAkpwFTefqYHV9lChoBmgJaA9DCOWc2EN7LmBAlIaUUpRoFU3oA2gWR0CSoMhisny/dX2UKGgGaAloD0MI4uXpXFGyYUCUhpRSlGgVTegDaBZHQJKrS5SWJJp1fZQoaAZoCWgPQwiLxW8KqyBlQJSGlFKUaBVN6ANoFkdAkrVVAiV0LnV9lChoBmgJaA9DCMpqup7od11AlIaUUpRoFU3oA2gWR0CStZrrxAjZdX2UKGgGaAloD0MIgc8PI4QRXECUhpRSlGgVTegDaBZHQJLA1rwe/6B1fZQoaAZoCWgPQwi/uipQiw5iQJSGlFKUaBVN6ANoFkdAksIs8HObAnV9lChoBmgJaA9DCMX/HVGhXmBAlIaUUpRoFU3oA2gWR0CSwqkNWluWdX2UKGgGaAloD0MIHQOy17thXECUhpRSlGgVTegDaBZHQJLCutr9ETh1fZQoaAZoCWgPQwixMa8jDi9kQJSGlFKUaBVN6ANoFkdAksLxVMmF8HV9lChoBmgJaA9DCGlwW1v4omBAlIaUUpRoFU3oA2gWR0CSw7zsyBTXdX2UKGgGaAloD0MI1jbF46IgXkCUhpRSlGgVTegDaBZHQJLG3pTuOS51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75fbd8032f8b77deb0a9ed39827aa63b57a260dca2eefebbdfa27d7c8d8029b3
|
3 |
+
size 147390
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f890e616c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f890e616ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f890e616d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f890e616dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f890e616e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f890e616ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f890e616f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f890e61c040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f890e61c0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f890e61c160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f890e61c1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f890e61c280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f890e617570>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 507904,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677906629471648535,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrwpz1sNO8+oiCpvezTCr4d8Me9OzmcvQAAAAAAAAAA5tEOv9IW9b2I7k287UU2uksVMTzRR4M7AACAPwAAgD+6AlO+c5gJP+arib3uQQG/H5y7OufOxT0AAAAAAAAAAMYCe77wb/4+4y88PprlAb+OTA08vrbzuwAAAAAAAAAAVk+2PjaSc7wug/47I9w/uq/xqL2zWfe6AACAPwAAgD8arcO9KSg3umHgkTutVeI2RpGSuRqm0zUAAIA/AACAP+b+7D32AF26SRENvANTFThC5qA7QMgPOQAAgD8AAIA/CDGBvviA1DyP8Q47R/yyuURhar6TNEK6AACAPwAAgD9mZdy9F/tDP3Ab6D0rxM++/hlJvuJGJD4AAAAAAAAAABPthT5Ejv4+6mapvcJuk75B1OY9RcFROgAAAAAAAAAABQcKP02gRT6NaZ88ORYPuZRn1D3o2ga8AACAPwAAgD8zpna9rgv1Psy/jr0ibJm+JhtlvT19i70AAAAAAAAAAHrjw77xOJE9L00tOzdp1blbfmi+P6xMugAAgD8AAIA/bZlbvi5L1DvGMK67HrRyOV/Ber1KYM+4AACAPwAAgD8NUM+9hSOXueK0bbta01y2cZpLuvY3zzUAAIA/AACAP4CsFr1KhqE/6TqJvgze276SLMK8nqzzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIipElcyzfK0CUhpRSlIwBbJRL14wBdJRHQJEl0PkJa7p1fZQoaAZoCWgPQwjPSIRGsP1bQJSGlFKUaBVN6ANoFkdAkShrGm1pkHV9lChoBmgJaA9DCFjGhm72r1zAlIaUUpRoFU1KAWgWR0CRLMarmyPddX2UKGgGaAloD0MI5E1+i06hVUCUhpRSlGgVTegDaBZHQJEue7J4jbB1fZQoaAZoCWgPQwhcrROX48dBQJSGlFKUaBVLwGgWR0CRNL1BdD6WdX2UKGgGaAloD0MIzSGphZLkZ0CUhpRSlGgVTWUCaBZHQJE5yq1gH/t1fZQoaAZoCWgPQwh8CoDxDJhMQJSGlFKUaBVN6ANoFkdAkUEyPMjeK3V9lChoBmgJaA9DCJ9b6EoEFmJAlIaUUpRoFU3oA2gWR0CRSUOoYNy6dX2UKGgGaAloD0MItFcfD/2gYECUhpRSlGgVTegDaBZHQJFPnDXOGCZ1fZQoaAZoCWgPQwgDXmbYqEphQJSGlFKUaBVN6ANoFkdAkU/R51Ng0HV9lChoBmgJaA9DCJ0Te2ifl2NAlIaUUpRoFU3oA2gWR0CRUP8lolD4dX2UKGgGaAloD0MIS3fX2ZCaYUCUhpRSlGgVTegDaBZHQJFR1KqXF991fZQoaAZoCWgPQwinBprPubczQJSGlFKUaBVL0mgWR0CRUmNzKcNIdX2UKGgGaAloD0MI2qhOB7JtYUCUhpRSlGgVTegDaBZHQJFXvYBeXzF1fZQoaAZoCWgPQwgbhLndy3hWQJSGlFKUaBVN6ANoFkdAkVjSuloDgnV9lChoBmgJaA9DCEyKj0/Ijvm/lIaUUpRoFUvmaBZHQJFcuN70Fr51fZQoaAZoCWgPQwgsf74tWOo4QJSGlFKUaBVLwWgWR0CRXS90A93bdX2UKGgGaAloD0MIppwv9l4DYECUhpRSlGgVTegDaBZHQJFdP8k2P1d1fZQoaAZoCWgPQwhYjSWsjUVKQJSGlFKUaBVL3mgWR0CRXXQvHtF8dX2UKGgGaAloD0MIdF/ObFe4WkCUhpRSlGgVTegDaBZHQJFxr2GqPwN1fZQoaAZoCWgPQwioqtBALA1AwJSGlFKUaBVLzmgWR0CRd9SVGCqZdX2UKGgGaAloD0MIJbGk3H1RWkCUhpRSlGgVTegDaBZHQJF6zPGACnx1fZQoaAZoCWgPQwhR24ZREB1aQJSGlFKUaBVN6ANoFkdAkYFKzZ6D5HV9lChoBmgJaA9DCH0IqkavEEVAlIaUUpRoFUvkaBZHQJGH7HwPRRd1fZQoaAZoCWgPQwjUYvAw7YNUQJSGlFKUaBVN6ANoFkdAkYhRjJ+2E3V9lChoBmgJaA9DCEbvVMC9bmFAlIaUUpRoFU3oA2gWR0CRidhib2DhdX2UKGgGaAloD0MIxMw+j1HYZECUhpRSlGgVTegDaBZHQJGPWxC6Ymd1fZQoaAZoCWgPQwhoWmJltJVlQJSGlFKUaBVN6ANoFkdAkZKkug6EJ3V9lChoBmgJaA9DCE35EFSNSjBAlIaUUpRoFUvlaBZHQJGVpK/VRUF1fZQoaAZoCWgPQwh64c6FkWY3QJSGlFKUaBVL42gWR0CRlxnSv1UVdX2UKGgGaAloD0MIHaz/cxiCYkCUhpRSlGgVTegDaBZHQJGcUqmTC+F1fZQoaAZoCWgPQwgPKQZItLJjQJSGlFKUaBVN6ANoFkdAkaJXtF8XvnV9lChoBmgJaA9DCNQMqaJ40THAlIaUUpRoFUu9aBZHQJGjljhDPWx1fZQoaAZoCWgPQwjRzJNrilRiQJSGlFKUaBVN6ANoFkdAkaRwBYFJQXV9lChoBmgJaA9DCOT1YFJ8wVtAlIaUUpRoFU3oA2gWR0CRrQsIVuaXdX2UKGgGaAloD0MIh4kGKXhqDUCUhpRSlGgVS85oFkdAkbHHHmzSkXV9lChoBmgJaA9DCDj0Fg/vAVxAlIaUUpRoFU3oA2gWR0CRs+GUwBYFdX2UKGgGaAloD0MIw4AlV7HTYkCUhpRSlGgVTegDaBZHQJG0o7xNIsl1fZQoaAZoCWgPQwgsD9JT5LxcQJSGlFKUaBVN6ANoFkdAkbTB91EE1XV9lChoBmgJaA9DCIFCPX0ER1VAlIaUUpRoFU3oA2gWR0CRtRiw0O3EdX2UKGgGaAloD0MIBYpYxLC3ZECUhpRSlGgVTegDaBZHQJG1fCtRvWJ1fZQoaAZoCWgPQwh8tDhjmHMOQJSGlFKUaBVL7mgWR0CRtk7sv7FbdX2UKGgGaAloD0MIlIjwL4I6UkCUhpRSlGgVTegDaBZHQJHTGEytV7x1fZQoaAZoCWgPQwjA54cRwtM5QJSGlFKUaBVL8WgWR0CR08pcX3xndX2UKGgGaAloD0MIzLVoAVpPZECUhpRSlGgVTegDaBZHQJHX1lAeJYV1fZQoaAZoCWgPQwjMJVXbTR5hQJSGlFKUaBVN6ANoFkdAkd5OkHlfZ3V9lChoBmgJaA9DCEikbfyJih3AlIaUUpRoFUvDaBZHQJHe0cjqv/11fZQoaAZoCWgPQwiBBMWPMUFeQJSGlFKUaBVN6ANoFkdAkeceOS4e93V9lChoBmgJaA9DCLYwC+0cDGNAlIaUUpRoFU3oA2gWR0CR7BoS+QEIdX2UKGgGaAloD0MILquwGeAC+7+UhpRSlGgVS9NoFkdAke5z8UEgXHV9lChoBmgJaA9DCCxIMxZNAzJAlIaUUpRoFUviaBZHQJHwg33pOet1fZQoaAZoCWgPQwjKwWwCjNJgQJSGlFKUaBVN6ANoFkdAkfCcAR02cnV9lChoBmgJaA9DCIpyafxCxGFAlIaUUpRoFU3oA2gWR0CR+bNhmXgMdX2UKGgGaAloD0MIF0m70UdUYECUhpRSlGgVTegDaBZHQJIBaixmkFh1fZQoaAZoCWgPQwhznUZaKixWQJSGlFKUaBVN6ANoFkdAkg5y4z7/GXV9lChoBmgJaA9DCKMBvAUSWWJAlIaUUpRoFU3oA2gWR0CSECYqG1x9dX2UKGgGaAloD0MI2QbuQB0TYkCUhpRSlGgVTegDaBZHQJIQvNJOFg51fZQoaAZoCWgPQwgM6IU7F2BaQJSGlFKUaBVN6ANoFkdAkhDa4lQdj3V9lChoBmgJaA9DCM0Bgjl6rV5AlIaUUpRoFU3oA2gWR0CSESAk9lmOdX2UKGgGaAloD0MIqaPjamSOW0CUhpRSlGgVTegDaBZHQJIRcGIKtxN1fZQoaAZoCWgPQwi9w+3QsHRcQJSGlFKUaBVN6ANoFkdAkhIdX9zfanV9lChoBmgJaA9DCCAkC5jAa1tAlIaUUpRoFU3oA2gWR0CSMp2uxKQJdX2UKGgGaAloD0MIbxEY6xugK0CUhpRSlGgVS9RoFkdAkjXwp4KQaXV9lChoBmgJaA9DCJgxBWscyWFAlIaUUpRoFU3oA2gWR0CSNoiXpnpTdX2UKGgGaAloD0MI5s+3BUu1PECUhpRSlGgVS/doFkdAkkCFpCa7VnV9lChoBmgJaA9DCAOV8e8zf1tAlIaUUpRoFU3oA2gWR0CSQ+fCyhSMdX2UKGgGaAloD0MIgqs8gTCKYECUhpRSlGgVTegDaBZHQJJHJEDyOJd1fZQoaAZoCWgPQwgiwyreyFlcQJSGlFKUaBVN6ANoFkdAkkitUsFt9HV9lChoBmgJaA9DCMkE/BrJtWJAlIaUUpRoFU3oA2gWR0CSSeiVjZtfdX2UKGgGaAloD0MIMNrjhXTwYkCUhpRSlGgVTegDaBZHQJJJ+ITGo751fZQoaAZoCWgPQwj+X3XkSONcQJSGlFKUaBVN6ANoFkdAkk7+mR/3FnV9lChoBmgJaA9DCNF0djI4Ii7AlIaUUpRoFUv2aBZHQJJU7oKUmlZ1fZQoaAZoCWgPQwjK+s3EdLdWQJSGlFKUaBVN6ANoFkdAklUnPzFuN3V9lChoBmgJaA9DCGTnbWx2TC1AlIaUUpRoFUvlaBZHQJJVUUwi7kJ1fZQoaAZoCWgPQwipvvOLEuVawJSGlFKUaBVNkgFoFkdAkljRNEgGKXV9lChoBmgJaA9DCAbaHVIM+V1AlIaUUpRoFU3oA2gWR0CSYIqur6tUdX2UKGgGaAloD0MIOBWpMLbgI0CUhpRSlGgVS7hoFkdAkmGj1GsmwHV9lChoBmgJaA9DCNGuQspPk2JAlIaUUpRoFU3oA2gWR0CSYlNjbzshdX2UKGgGaAloD0MIHF2lu+seYECUhpRSlGgVTegDaBZHQJJi8clw97p1fZQoaAZoCWgPQwhjYvNx7cZkQJSGlFKUaBVN6ANoFkdAkmMK6z3RHHV9lChoBmgJaA9DCNMuppnuOFtAlIaUUpRoFU3oA2gWR0CSY1eu3c59dX2UKGgGaAloD0MIOiF00CUmWkCUhpRSlGgVTegDaBZHQJJkexA0Kqp1fZQoaAZoCWgPQwjfbHNjeqI8wJSGlFKUaBVL3mgWR0CSfnh8IAwPdX2UKGgGaAloD0MIqTEh5pJKFMCUhpRSlGgVS6NoFkdAkoFVHz6JqXV9lChoBmgJaA9DCLOyfchbSl1AlIaUUpRoFU3oA2gWR0CShXAqNIbwdX2UKGgGaAloD0MI1UDzOXdrW0CUhpRSlGgVTegDaBZHQJKGDDZUT+N1fZQoaAZoCWgPQwgNiuYBrClhQJSGlFKUaBVN6ANoFkdAkpF2mUGFBnV9lChoBmgJaA9DCHQn2H+d6x9AlIaUUpRoFUvZaBZHQJKVHsa86FN1fZQoaAZoCWgPQwj20akrn1BfQJSGlFKUaBVN6ANoFkdAkpwFTefqYHV9lChoBmgJaA9DCOWc2EN7LmBAlIaUUpRoFU3oA2gWR0CSoMhisny/dX2UKGgGaAloD0MI4uXpXFGyYUCUhpRSlGgVTegDaBZHQJKrS5SWJJp1fZQoaAZoCWgPQwiLxW8KqyBlQJSGlFKUaBVN6ANoFkdAkrVVAiV0LnV9lChoBmgJaA9DCMpqup7od11AlIaUUpRoFU3oA2gWR0CStZrrxAjZdX2UKGgGaAloD0MIgc8PI4QRXECUhpRSlGgVTegDaBZHQJLA1rwe/6B1fZQoaAZoCWgPQwi/uipQiw5iQJSGlFKUaBVN6ANoFkdAksIs8HObAnV9lChoBmgJaA9DCMX/HVGhXmBAlIaUUpRoFU3oA2gWR0CSwqkNWluWdX2UKGgGaAloD0MIHQOy17thXECUhpRSlGgVTegDaBZHQJLCutr9ETh1fZQoaAZoCWgPQwixMa8jDi9kQJSGlFKUaBVN6ANoFkdAksLxVMmF8HV9lChoBmgJaA9DCGlwW1v4omBAlIaUUpRoFU3oA2gWR0CSw7zsyBTXdX2UKGgGaAloD0MI1jbF46IgXkCUhpRSlGgVTegDaBZHQJLG3pTuOS51ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 124,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa77c6c162e6fc32d5a66a1451262d37275562973ab7d45ef066d634a7b0f951
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d11ecb4f58735b25a51f4724b662b653c1b23c33faa74cfe24d5c621760fe211
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (238 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 158.9662950664257, "std_reward": 104.55634556072896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T05:29:21.060846"}
|