from .k_diffusion import sampling as k_diffusion_sampling from .k_diffusion import external as k_diffusion_external from .extra_samplers import uni_pc import torch from comfy import model_management from .ldm.models.diffusion.ddim import DDIMSampler from .ldm.modules.diffusionmodules.util import make_ddim_timesteps import math from comfy import model_base import comfy.utils def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) return abs(a*b) // math.gcd(a, b) #The main sampling function shared by all the samplers #Returns predicted noise def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None): def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 if 'timestep_start' in cond[1]: timestep_start = cond[1]['timestep_start'] if timestep_in[0] > timestep_start: return None if 'timestep_end' in cond[1]: timestep_end = cond[1]['timestep_end'] if timestep_in[0] < timestep_end: return None if 'area' in cond[1]: area = cond[1]['area'] if 'strength' in cond[1]: strength = cond[1]['strength'] adm_cond = None if 'adm_encoded' in cond[1]: adm_cond = cond[1]['adm_encoded'] input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] if 'mask' in cond[1]: # Scale the mask to the size of the input # The mask should have been resized as we began the sampling process mask_strength = 1.0 if "mask_strength" in cond[1]: mask_strength = cond[1]["mask_strength"] mask = cond[1]['mask'] assert(mask.shape[1] == x_in.shape[2]) assert(mask.shape[2] == x_in.shape[3]) mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) else: mask = torch.ones_like(input_x) mult = mask * strength if 'mask' not in cond[1]: rr = 8 if area[2] != 0: for t in range(rr): mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1)) if (area[0] + area[2]) < x_in.shape[2]: for t in range(rr): mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1)) if area[3] != 0: for t in range(rr): mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1)) if (area[1] + area[3]) < x_in.shape[3]: for t in range(rr): mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1)) conditionning = {} conditionning['c_crossattn'] = cond[0] if cond_concat_in is not None and len(cond_concat_in) > 0: cropped = [] for x in cond_concat_in: cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] cropped.append(cr) conditionning['c_concat'] = torch.cat(cropped, dim=1) if adm_cond is not None: conditionning['c_adm'] = adm_cond control = None if 'control' in cond[1]: control = cond[1]['control'] patches = None if 'gligen' in cond[1]: gligen = cond[1]['gligen'] patches = {} gligen_type = gligen[0] gligen_model = gligen[1] if gligen_type == "position": gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) else: gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) patches['middle_patch'] = [gligen_patch] return (input_x, mult, conditionning, area, control, patches) def cond_equal_size(c1, c2): if c1 is c2: return True if c1.keys() != c2.keys(): return False if 'c_crossattn' in c1: s1 = c1['c_crossattn'].shape s2 = c2['c_crossattn'].shape if s1 != s2: if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen return False mult_min = lcm(s1[1], s2[1]) diff = mult_min // min(s1[1], s2[1]) if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much return False if 'c_concat' in c1: if c1['c_concat'].shape != c2['c_concat'].shape: return False if 'c_adm' in c1: if c1['c_adm'].shape != c2['c_adm'].shape: return False return True def can_concat_cond(c1, c2): if c1[0].shape != c2[0].shape: return False #control if (c1[4] is None) != (c2[4] is None): return False if c1[4] is not None: if c1[4] is not c2[4]: return False #patches if (c1[5] is None) != (c2[5] is None): return False if (c1[5] is not None): if c1[5] is not c2[5]: return False return cond_equal_size(c1[2], c2[2]) def cond_cat(c_list): c_crossattn = [] c_concat = [] c_adm = [] crossattn_max_len = 0 for x in c_list: if 'c_crossattn' in x: c = x['c_crossattn'] if crossattn_max_len == 0: crossattn_max_len = c.shape[1] else: crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) c_crossattn.append(c) if 'c_concat' in x: c_concat.append(x['c_concat']) if 'c_adm' in x: c_adm.append(x['c_adm']) out = {} c_crossattn_out = [] for c in c_crossattn: if c.shape[1] < crossattn_max_len: c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result c_crossattn_out.append(c) if len(c_crossattn_out) > 0: out['c_crossattn'] = torch.cat(c_crossattn_out) if len(c_concat) > 0: out['c_concat'] = torch.cat(c_concat) if len(c_adm) > 0: out['c_adm'] = torch.cat(c_adm) return out def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in)/100000.0 out_uncond = torch.zeros_like(x_in) out_uncond_count = torch.ones_like(x_in)/100000.0 COND = 0 UNCOND = 1 to_run = [] for x in cond: p = get_area_and_mult(x, x_in, cond_concat_in, timestep) if p is None: continue to_run += [(p, COND)] if uncond is not None: for x in uncond: p = get_area_and_mult(x, x_in, cond_concat_in, timestep) if p is None: continue to_run += [(p, UNCOND)] while len(to_run) > 0: first = to_run[0] first_shape = first[0][0].shape to_batch_temp = [] for x in range(len(to_run)): if can_concat_cond(to_run[x][0], first[0]): to_batch_temp += [x] to_batch_temp.reverse() to_batch = to_batch_temp[:1] for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp)//i] if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): to_batch = batch_amount break input_x = [] mult = [] c = [] cond_or_uncond = [] area = [] control = None patches = None for x in to_batch: o = to_run.pop(x) p = o[0] input_x += [p[0]] mult += [p[1]] c += [p[2]] area += [p[3]] cond_or_uncond += [o[1]] control = p[4] patches = p[5] batch_chunks = len(cond_or_uncond) input_x = torch.cat(input_x) c = cond_cat(c) timestep_ = torch.cat([timestep] * batch_chunks) if control is not None: c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) transformer_options = {} if 'transformer_options' in model_options: transformer_options = model_options['transformer_options'].copy() if patches is not None: if "patches" in transformer_options: cur_patches = transformer_options["patches"].copy() for p in patches: if p in cur_patches: cur_patches[p] = cur_patches[p] + patches[p] else: cur_patches[p] = patches[p] else: transformer_options["patches"] = patches transformer_options["cond_or_uncond"] = cond_or_uncond[:] c['transformer_options'] = transformer_options if 'model_function_wrapper' in model_options: output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) else: output = model_function(input_x, timestep_, **c).chunk(batch_chunks) del input_x for o in range(batch_chunks): if cond_or_uncond[o] == COND: out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] else: out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] del mult out_cond /= out_count del out_count out_uncond /= out_uncond_count del out_uncond_count return out_cond, out_uncond max_total_area = model_management.maximum_batch_area() if math.isclose(cond_scale, 1.0): uncond = None cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options) if "sampler_cfg_function" in model_options: args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep} return model_options["sampler_cfg_function"](args) else: return uncond + (cond - uncond) * cond_scale class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser): def __init__(self, model, quantize=False, device='cpu'): super().__init__(model, model.alphas_cumprod, quantize=quantize) def get_v(self, x, t, cond, **kwargs): return self.inner_model.apply_model(x, t, cond, **kwargs) class CFGNoisePredictor(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model self.alphas_cumprod = model.alphas_cumprod def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None): out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed) return out class KSamplerX0Inpaint(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None): if denoise_mask is not None: latent_mask = 1. - denoise_mask x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed) if denoise_mask is not None: out *= denoise_mask if denoise_mask is not None: out += self.latent_image * latent_mask return out def simple_scheduler(model, steps): sigs = [] ss = len(model.sigmas) / steps for x in range(steps): sigs += [float(model.sigmas[-(1 + int(x * ss))])] sigs += [0.0] return torch.FloatTensor(sigs) def ddim_scheduler(model, steps): sigs = [] ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False) for x in range(len(ddim_timesteps) - 1, -1, -1): ts = ddim_timesteps[x] if ts > 999: ts = 999 sigs.append(model.t_to_sigma(torch.tensor(ts))) sigs += [0.0] return torch.FloatTensor(sigs) def sgm_scheduler(model, steps): sigs = [] timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int) for x in range(len(timesteps)): ts = timesteps[x] if ts > 999: ts = 999 sigs.append(model.t_to_sigma(torch.tensor(ts))) sigs += [0.0] return torch.FloatTensor(sigs) def blank_inpaint_image_like(latent_image): blank_image = torch.ones_like(latent_image) # these are the values for "zero" in pixel space translated to latent space blank_image[:,0] *= 0.8223 blank_image[:,1] *= -0.6876 blank_image[:,2] *= 0.6364 blank_image[:,3] *= 0.1380 return blank_image def get_mask_aabb(masks): if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device, dtype=torch.int) b = masks.shape[0] bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) for i in range(b): mask = masks[i] if mask.numel() == 0: continue if torch.max(mask != 0) == False: is_empty[i] = True continue y, x = torch.where(mask) bounding_boxes[i, 0] = torch.min(x) bounding_boxes[i, 1] = torch.min(y) bounding_boxes[i, 2] = torch.max(x) bounding_boxes[i, 3] = torch.max(y) return bounding_boxes, is_empty def resolve_areas_and_cond_masks(conditions, h, w, device): # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. # While we're doing this, we can also resolve the mask device and scaling for performance reasons for i in range(len(conditions)): c = conditions[i] if 'area' in c[1]: area = c[1]['area'] if area[0] == "percentage": modified = c[1].copy() area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w)) modified['area'] = area c = [c[0], modified] conditions[i] = c if 'mask' in c[1]: mask = c[1]['mask'] mask = mask.to(device=device) modified = c[1].copy() if len(mask.shape) == 2: mask = mask.unsqueeze(0) if mask.shape[1] != h or mask.shape[2] != w: mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1) if modified.get("set_area_to_bounds", False): bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) boxes, is_empty = get_mask_aabb(bounds) if is_empty[0]: # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) modified['area'] = (8, 8, 0, 0) else: box = boxes[0] H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) H = max(8, H) W = max(8, W) area = (int(H), int(W), int(Y), int(X)) modified['area'] = area modified['mask'] = mask conditions[i] = [c[0], modified] def create_cond_with_same_area_if_none(conds, c): if 'area' not in c[1]: return c_area = c[1]['area'] smallest = None for x in conds: if 'area' in x[1]: a = x[1]['area'] if c_area[2] >= a[2] and c_area[3] >= a[3]: if a[0] + a[2] >= c_area[0] + c_area[2]: if a[1] + a[3] >= c_area[1] + c_area[3]: if smallest is None: smallest = x elif 'area' not in smallest[1]: smallest = x else: if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]: smallest = x else: if smallest is None: smallest = x if smallest is None: return if 'area' in smallest[1]: if smallest[1]['area'] == c_area: return n = c[1].copy() conds += [[smallest[0], n]] def calculate_start_end_timesteps(model, conds): for t in range(len(conds)): x = conds[t] timestep_start = None timestep_end = None if 'start_percent' in x[1]: timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0))) if 'end_percent' in x[1]: timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0))) if (timestep_start is not None) or (timestep_end is not None): n = x[1].copy() if (timestep_start is not None): n['timestep_start'] = timestep_start if (timestep_end is not None): n['timestep_end'] = timestep_end conds[t] = [x[0], n] def pre_run_control(model, conds): for t in range(len(conds)): x = conds[t] timestep_start = None timestep_end = None percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0)) if 'control' in x[1]: x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function) def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): cond_cnets = [] cond_other = [] uncond_cnets = [] uncond_other = [] for t in range(len(conds)): x = conds[t] if 'area' not in x[1]: if name in x[1] and x[1][name] is not None: cond_cnets.append(x[1][name]) else: cond_other.append((x, t)) for t in range(len(uncond)): x = uncond[t] if 'area' not in x[1]: if name in x[1] and x[1][name] is not None: uncond_cnets.append(x[1][name]) else: uncond_other.append((x, t)) if len(uncond_cnets) > 0: return for x in range(len(cond_cnets)): temp = uncond_other[x % len(uncond_other)] o = temp[0] if name in o[1] and o[1][name] is not None: n = o[1].copy() n[name] = uncond_fill_func(cond_cnets, x) uncond += [[o[0], n]] else: n = o[1].copy() n[name] = uncond_fill_func(cond_cnets, x) uncond[temp[1]] = [o[0], n] def encode_adm(model, conds, batch_size, width, height, device, prompt_type): for t in range(len(conds)): x = conds[t] adm_out = None if 'adm' in x[1]: adm_out = x[1]["adm"] else: params = x[1].copy() params["width"] = params.get("width", width * 8) params["height"] = params.get("height", height * 8) params["prompt_type"] = params.get("prompt_type", prompt_type) adm_out = model.encode_adm(device=device, **params) if adm_out is not None: x[1] = x[1].copy() x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device) return conds class KSampler: SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "ddim", "uni_pc", "uni_pc_bh2"] def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): self.model = model self.model_denoise = CFGNoisePredictor(self.model) if self.model.model_type == model_base.ModelType.V_PREDICTION: self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True) else: self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True) self.model_k = KSamplerX0Inpaint(self.model_wrap) self.device = device if scheduler not in self.SCHEDULERS: scheduler = self.SCHEDULERS[0] if sampler not in self.SAMPLERS: sampler = self.SAMPLERS[0] self.scheduler = scheduler self.sampler = sampler self.sigma_min=float(self.model_wrap.sigma_min) self.sigma_max=float(self.model_wrap.sigma_max) self.set_steps(steps, denoise) self.denoise = denoise self.model_options = model_options def calculate_sigmas(self, steps): sigmas = None discard_penultimate_sigma = False if self.sampler in ['dpm_2', 'dpm_2_ancestral']: steps += 1 discard_penultimate_sigma = True if self.scheduler == "karras": sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) elif self.scheduler == "exponential": sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) elif self.scheduler == "normal": sigmas = self.model_wrap.get_sigmas(steps) elif self.scheduler == "simple": sigmas = simple_scheduler(self.model_wrap, steps) elif self.scheduler == "ddim_uniform": sigmas = ddim_scheduler(self.model_wrap, steps) elif self.scheduler == "sgm_uniform": sigmas = sgm_scheduler(self.model_wrap, steps) else: print("error invalid scheduler", self.scheduler) if discard_penultimate_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas def set_steps(self, steps, denoise=None): self.steps = steps if denoise is None or denoise > 0.9999: self.sigmas = self.calculate_sigmas(steps).to(self.device) else: new_steps = int(steps/denoise) sigmas = self.calculate_sigmas(new_steps).to(self.device) self.sigmas = sigmas[-(steps + 1):] def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): if sigmas is None: sigmas = self.sigmas sigma_min = self.sigma_min if last_step is not None and last_step < (len(sigmas) - 1): sigma_min = sigmas[last_step] sigmas = sigmas[:last_step + 1] if force_full_denoise: sigmas[-1] = 0 if start_step is not None: if start_step < (len(sigmas) - 1): sigmas = sigmas[start_step:] else: if latent_image is not None: return latent_image else: return torch.zeros_like(noise) positive = positive[:] negative = negative[:] resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) calculate_start_end_timesteps(self.model_wrap, negative) calculate_start_end_timesteps(self.model_wrap, positive) #make sure each cond area has an opposite one with the same area for c in positive: create_cond_with_same_area_if_none(negative, c) for c in negative: create_cond_with_same_area_if_none(positive, c) pre_run_control(self.model_wrap, negative + positive) apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) if self.model.is_adm(): positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive") negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative") if latent_image is not None: latent_image = self.model.process_latent_in(latent_image) extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed} cond_concat = None if hasattr(self.model, 'concat_keys'): #inpaint cond_concat = [] for ck in self.model.concat_keys: if denoise_mask is not None: if ck == "mask": cond_concat.append(denoise_mask[:,:1]) elif ck == "masked_image": cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space else: if ck == "mask": cond_concat.append(torch.ones_like(noise)[:,:1]) elif ck == "masked_image": cond_concat.append(blank_inpaint_image_like(noise)) extra_args["cond_concat"] = cond_concat if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0): max_denoise = False else: max_denoise = True if self.sampler == "uni_pc": samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar) elif self.sampler == "uni_pc_bh2": samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar) elif self.sampler == "ddim": timesteps = [] for s in range(sigmas.shape[0]): timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s])) noise_mask = None if denoise_mask is not None: noise_mask = 1.0 - denoise_mask ddim_callback = None if callback is not None: total_steps = len(timesteps) - 1 ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps) sampler = DDIMSampler(self.model, device=self.device) sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False) z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise) samples, _ = sampler.sample_custom(ddim_timesteps=timesteps, conditioning=positive, batch_size=noise.shape[0], shape=noise.shape[1:], verbose=False, unconditional_guidance_scale=cfg, unconditional_conditioning=negative, eta=0.0, x_T=z_enc, x0=latent_image, img_callback=ddim_callback, denoise_function=self.model_wrap.predict_eps_discrete_timestep, extra_args=extra_args, mask=noise_mask, to_zero=sigmas[-1]==0, end_step=sigmas.shape[0] - 1, disable_pbar=disable_pbar) else: extra_args["denoise_mask"] = denoise_mask self.model_k.latent_image = latent_image self.model_k.noise = noise if max_denoise: noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) else: noise = noise * sigmas[0] k_callback = None total_steps = len(sigmas) - 1 if callback is not None: k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) if latent_image is not None: noise += latent_image if self.sampler == "dpm_fast": samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar) elif self.sampler == "dpm_adaptive": samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar) else: samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar) return self.model.process_latent_out(samples.to(torch.float32))