from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from typing import Optional, Any from .diffusionmodules.util import checkpoint from .sub_quadratic_attention import efficient_dot_product_attention from comfy import model_management if model_management.xformers_enabled(): import xformers import xformers.ops from comfy.cli_args import args import comfy.ops # CrossAttn precision handling if args.dont_upcast_attention: print("disabling upcasting of attention") _ATTN_PRECISION = "fp16" else: _ATTN_PRECISION = "fp32" def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops): super().__init__() self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( operations.Linear(dim, inner_dim, dtype=dtype, device=device), nn.GELU() ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) self.net = nn.Sequential( project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels, dtype=None, device=None): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttentionBirchSan(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential( operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout) ) def forward(self, x, context=None, value=None, mask=None): h = self.heads query = self.to_q(x) context = default(context, x) key = self.to_k(context) if value is not None: value = self.to_v(value) else: value = self.to_v(context) del context, x query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1) del key value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) dtype = query.dtype upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32 if upcast_attention: bytes_per_token = torch.finfo(torch.float32).bits//8 else: bytes_per_token = torch.finfo(query.dtype).bits//8 batch_x_heads, q_tokens, _ = query.shape _, _, k_tokens = key_t.shape qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD kv_chunk_size_min = None #not sure at all about the math here #TODO: tweak this if mem_free_total > 8192 * 1024 * 1024 * 1.3: query_chunk_size_x = 1024 * 4 elif mem_free_total > 4096 * 1024 * 1024 * 1.3: query_chunk_size_x = 1024 * 2 else: query_chunk_size_x = 1024 kv_chunk_size_min_x = None kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024 if kv_chunk_size_x < 1024: kv_chunk_size_x = None if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: # the big matmul fits into our memory limit; do everything in 1 chunk, # i.e. send it down the unchunked fast-path query_chunk_size = q_tokens kv_chunk_size = k_tokens else: query_chunk_size = query_chunk_size_x kv_chunk_size = kv_chunk_size_x kv_chunk_size_min = kv_chunk_size_min_x hidden_states = efficient_dot_product_attention( query, key_t, value, query_chunk_size=query_chunk_size, kv_chunk_size=kv_chunk_size, kv_chunk_size_min=kv_chunk_size_min, use_checkpoint=self.training, upcast_attention=upcast_attention, ) hidden_states = hidden_states.to(dtype) hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2) out_proj, dropout = self.to_out hidden_states = out_proj(hidden_states) hidden_states = dropout(hidden_states) return hidden_states class CrossAttentionDoggettx(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential( operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout) ) def forward(self, x, context=None, value=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) k_in = self.to_k(context) if value is not None: v_in = self.to_v(value) del value else: v_in = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) mem_free_total = model_management.get_free_memory(q.device) gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 if mem_required > mem_free_total: steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") if steps > 64: max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) first_op_done = False cleared_cache = False while True: try: slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale else: s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale first_op_done = True s2 = s1.softmax(dim=-1).to(v.dtype) del s1 r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 break except model_management.OOM_EXCEPTION as e: if first_op_done == False: model_management.soft_empty_cache(True) if cleared_cache == False: cleared_cache = True print("out of memory error, emptying cache and trying again") continue steps *= 2 if steps > 64: raise e print("out of memory error, increasing steps and trying again", steps) else: raise e del q, k, v r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 return self.to_out(r2) class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential( operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout) ) def forward(self, x, context=None, value=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) if value is not None: v = self.to_v(value) del value else: v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) class MemoryEfficientCrossAttention(nn.Module): # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) self.attention_op: Optional[Any] = None def forward(self, x, context=None, value=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) if value is not None: v = self.to_v(value) del value else: v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class CrossAttentionPytorch(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) self.attention_op: Optional[Any] = None def forward(self, x, context=None, value=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) if value is not None: v = self.to_v(value) del value else: v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2), (q, k, v), ) out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) if exists(mask): raise NotImplementedError out = ( out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head) ) return self.to_out(out) if model_management.xformers_enabled(): print("Using xformers cross attention") CrossAttention = MemoryEfficientCrossAttention elif model_management.pytorch_attention_enabled(): print("Using pytorch cross attention") CrossAttention = CrossAttentionPytorch else: if args.use_split_cross_attention: print("Using split optimization for cross attention") CrossAttention = CrossAttentionDoggettx else: print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") CrossAttention = CrossAttentionBirchSan class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False, dtype=None, device=None, operations=comfy.ops): super().__init__() self.disable_self_attn = disable_self_attn self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device) self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device) self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device) self.checkpoint = checkpoint self.n_heads = n_heads self.d_head = d_head def forward(self, x, context=None, transformer_options={}): return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) def _forward(self, x, context=None, transformer_options={}): extra_options = {} block = None block_index = 0 if "current_index" in transformer_options: extra_options["transformer_index"] = transformer_options["current_index"] if "block_index" in transformer_options: block_index = transformer_options["block_index"] extra_options["block_index"] = block_index if "original_shape" in transformer_options: extra_options["original_shape"] = transformer_options["original_shape"] if "block" in transformer_options: block = transformer_options["block"] extra_options["block"] = block if "patches" in transformer_options: transformer_patches = transformer_options["patches"] else: transformer_patches = {} extra_options["n_heads"] = self.n_heads extra_options["dim_head"] = self.d_head if "patches_replace" in transformer_options: transformer_patches_replace = transformer_options["patches_replace"] else: transformer_patches_replace = {} n = self.norm1(x) if self.disable_self_attn: context_attn1 = context else: context_attn1 = None value_attn1 = None if "attn1_patch" in transformer_patches: patch = transformer_patches["attn1_patch"] if context_attn1 is None: context_attn1 = n value_attn1 = context_attn1 for p in patch: n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) if block is not None: transformer_block = (block[0], block[1], block_index) else: transformer_block = None attn1_replace_patch = transformer_patches_replace.get("attn1", {}) block_attn1 = transformer_block if block_attn1 not in attn1_replace_patch: block_attn1 = block if block_attn1 in attn1_replace_patch: if context_attn1 is None: context_attn1 = n value_attn1 = n n = self.attn1.to_q(n) context_attn1 = self.attn1.to_k(context_attn1) value_attn1 = self.attn1.to_v(value_attn1) n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) n = self.attn1.to_out(n) else: n = self.attn1(n, context=context_attn1, value=value_attn1) if "attn1_output_patch" in transformer_patches: patch = transformer_patches["attn1_output_patch"] for p in patch: n = p(n, extra_options) x += n if "middle_patch" in transformer_patches: patch = transformer_patches["middle_patch"] for p in patch: x = p(x, extra_options) n = self.norm2(x) context_attn2 = context value_attn2 = None if "attn2_patch" in transformer_patches: patch = transformer_patches["attn2_patch"] value_attn2 = context_attn2 for p in patch: n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) attn2_replace_patch = transformer_patches_replace.get("attn2", {}) block_attn2 = transformer_block if block_attn2 not in attn2_replace_patch: block_attn2 = block if block_attn2 in attn2_replace_patch: if value_attn2 is None: value_attn2 = context_attn2 n = self.attn2.to_q(n) context_attn2 = self.attn2.to_k(context_attn2) value_attn2 = self.attn2.to_v(value_attn2) n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) n = self.attn2.to_out(n) else: n = self.attn2(n, context=context_attn2, value=value_attn2) if "attn2_output_patch" in transformer_patches: patch = transformer_patches["attn2_output_patch"] for p in patch: n = p(n, extra_options) x += n x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image NEW: use_linear for more efficiency instead of the 1x1 convs """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True, dtype=None, device=None, operations=comfy.ops): super().__init__() if exists(context_dim) and not isinstance(context_dim, list): context_dim = [context_dim] * depth self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels, dtype=dtype, device=device) if not use_linear: self.proj_in = operations.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device) else: self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations) for d in range(depth)] ) if not use_linear: self.proj_out = operations.Conv2d(inner_dim,in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device) else: self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) self.use_linear = use_linear def forward(self, x, context=None, transformer_options={}): # note: if no context is given, cross-attention defaults to self-attention if not isinstance(context, list): context = [context] * len(self.transformer_blocks) b, c, h, w = x.shape x_in = x x = self.norm(x) if not self.use_linear: x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c').contiguous() if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): transformer_options["block_index"] = i x = block(x, context=context[i], transformer_options=transformer_options) if self.use_linear: x = self.proj_out(x) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() if not self.use_linear: x = self.proj_out(x) return x + x_in