model: base_learning_rate: 5.0e-05 target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "jpg" cond_stage_key: "txt" image_size: 64 channels: 4 cond_stage_trainable: false conditioning_key: hybrid scale_factor: 0.18215 monitor: val/loss_simple_ema finetune_keys: null use_ema: False unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: use_checkpoint: True image_size: 32 # unused in_channels: 9 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_head_channels: 64 # need to fix for flash-attn use_spatial_transformer: True use_linear_in_transformer: True transformer_depth: 1 context_dim: 1024 legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: #attn_type: "vanilla-xformers" double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [ ] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder params: freeze: True layer: "penultimate" data: target: ldm.data.laion.WebDataModuleFromConfig params: tar_base: null # for concat as in LAION-A p_unsafe_threshold: 0.1 filter_word_list: "data/filters.yaml" max_pwatermark: 0.45 batch_size: 8 num_workers: 6 multinode: True min_size: 512 train: shards: - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -" - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -" - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -" - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -" - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar" shuffle: 10000 image_key: jpg image_transforms: - target: torchvision.transforms.Resize params: size: 512 interpolation: 3 - target: torchvision.transforms.RandomCrop params: size: 512 postprocess: target: ldm.data.laion.AddMask params: mode: "512train-large" p_drop: 0.25 # NOTE use enough shards to avoid empty validation loops in workers validation: shards: - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - " shuffle: 0 image_key: jpg image_transforms: - target: torchvision.transforms.Resize params: size: 512 interpolation: 3 - target: torchvision.transforms.CenterCrop params: size: 512 postprocess: target: ldm.data.laion.AddMask params: mode: "512train-large" p_drop: 0.25 lightning: find_unused_parameters: True modelcheckpoint: params: every_n_train_steps: 5000 callbacks: metrics_over_trainsteps_checkpoint: params: every_n_train_steps: 10000 image_logger: target: main.ImageLogger params: enable_autocast: False disabled: False batch_frequency: 1000 max_images: 4 increase_log_steps: False log_first_step: False log_images_kwargs: use_ema_scope: False inpaint: False plot_progressive_rows: False plot_diffusion_rows: False N: 4 unconditional_guidance_scale: 5.0 unconditional_guidance_label: [""] ddim_steps: 50 # todo check these out for depth2img, ddim_eta: 0.0 # todo check these out for depth2img, trainer: benchmark: True val_check_interval: 5000000 num_sanity_val_steps: 0 accumulate_grad_batches: 1