File size: 4,295 Bytes
5a9f979
 
 
 
 
 
 
 
 
 
 
4698d5f
f4b82bf
5a9f979
 
 
 
 
2593c7e
6e99db5
626abab
6e99db5
626abab
6e99db5
5a9f979
 
ea2d672
 
 
5a9f979
 
 
 
 
 
6a4d456
5a9f979
280a343
 
 
5a9f979
 
 
 
 
 
 
 
 
 
497ab61
5a9f979
 
 
 
 
 
 
 
 
be9631c
 
a982b27
be9631c
5a9f979
 
ceefa66
 
 
fe7840e
 
 
2593c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6649c
 
 
5a9f979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c72d0a7
 
 
 
 
 
d7d453c
c72d0a7
 
 
 
d7d453c
 
c72d0a7
5a9f979
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
language: "en"
thumbnail:
tags:
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- xvectors
- TDNN
- speechbrain
- audio-classification
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
- min_dct
widget:
- example_title: VoxCeleb Speaker id10003
  src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
  src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Speaker Verification with xvector embeddings on Voxceleb

This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain. 
The system is trained on Voxceleb 1+ Voxceleb2 training data. 

For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on Voxceleb1-test set (Cleaned) is:

| Release | EER(%) 
|:-------------:|:--------------:|
| 05-03-21 | 3.2 | 


## Pipeline description
This system is composed of a TDNN model coupled with statistical pooling. The system is trained with Categorical Cross-Entropy Loss.  

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Compute your speaker embeddings

```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", savedir="pretrained_models/spkrec-xvect-voxceleb")
signal, fs =torchaudio.load('speechbrain/spkrec-xvect-voxceleb/example1.wav')
embeddings = classifier.encode_batch(signal)
```

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/VoxCeleb/SpeakerRec/
python train_speaker_embeddings.py hparams/train_x_vectors.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1RtCBJ3O8iOCkFrJItCKT9oL-Q1MNCwMH?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing xvectors
```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
  author    = {David Snyder and
               Daniel Garcia{-}Romero and
               Alan McCree and
               Gregory Sell and
               Daniel Povey and
               Sanjeev Khudanpur},
  title     = {Spoken Language Recognition using X-vectors},
  booktitle = {Odyssey 2018},
  pages     = {105--111},
  year      = {2018},
}
```


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.


```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```