---
language: "en"
inference: false
tags:
- Vocoder
- HiFIGAN
- speech-synthesis
- speechbrain
license: "apache-2.0"
datasets:
- LibriTTS
---
# Vocoder with HiFIGAN Unit trained on LibriTTS
This repository provides all the necessary tools for using a [scalable HiFiGAN Unit](https://arxiv.org/abs/2406.10735) vocoder trained with [LibriTTS](https://www.openslr.org/141/).
The pre-trained model take as input discrete self-supervised representations and produces a waveform as output. This is suitable for a wide range of generative tasks such as speech enhancement, separation, text-to-speech, voice cloning, etc. Please read [DASB - Discrete Audio and Speech Benchmark](https://arxiv.org/abs/2406.14294) for more information.
To generate the discrete self-supervised representations, we employ a K-means clustering model trained using `facebook/hubert-large-ll60k` hidden layers, with k=1000.
## Install SpeechBrain
First of all, please install tranformers and SpeechBrain with the following command:
```
pip install speechbrain transformers
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Using the Vocoder
```python
import torch
from speechbrain.inference.vocoders import UnitHIFIGAN
hifi_gan_unit = UnitHIFIGAN.from_hparams(source="speechbrain/hifigan-hubert-l1-3-7-12-18-23-k1000-LibriTTS", savedir="pretrained_models/vocoder")
codes = torch.randint(0, 99, (100, 1))
waveform = hifi_gan_unit.decode_unit(codes)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain