--- language: - pl license: apache-2.0 library_name: transformers tags: - finetuned - gguf - 8bit inference: false pipeline_tag: text-generation ---

# Bielik-11B-v2.2-Instruct-FP8 This model was obtained by quantizing the weights and activations of [Bielik-11B-v.2.2-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.2-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0 or SGLang. AutoFP8 is used for quantization. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. FP8 compuation is supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper). ## Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "speakleash/Bielik-11B-v2.2-Instruct-FP8" sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=4096) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "Jesteś pomocnym asystentem Bielik."}, {"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False) llm = LLM(model=model_id, max_model_len=4096) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Use with SGLang Runtime Launch a server of SGLang Runtime: ``` python -m sglang.launch_server --model-path speakleash/Bielik-11B-v2.2-Instruct-FP8 --port 30000 ``` Then you can send http request or use OpenAI Compatible API. ```python import openai client = openai.Client( base_url="http://127.0.0.1:30000/v1", api_key="EMPTY") response = client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "Jesteś pomocnym asystentem Bielik."}, {"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"}, ], temperature=0, max_tokens=64, ) print(response) ``` ### Model description: * **Developed by:** [SpeakLeash](https://speakleash.org/) & [ACK Cyfronet AGH](https://www.cyfronet.pl/) * **Language:** Polish * **Model type:** causal decoder-only * **Quant from:** [Bielik-11B-v2.2-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.2-Instruct) * **Finetuned from:** [Bielik-11B-v2](https://huggingface.co/speakleash/Bielik-11B-v2) * **License:** apache-2.0 ### Responsible for model quantization * [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/)SpeakLeash - team leadership, conceptualizing, calibration data preparation, process creation and quantized model delivery. ## Contact Us If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/CPBxPce4).