--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - precision - recall - f1 widget: - text: Maintenance to the cambridge.org website is scheduled for 14 March at 12am – 8am GMT. - text: Quarterly Earnings - text: 'So set sail for Long John Silver''s and discover why wa''re America''s most popular sealood vestments antannro fi ' - text: "\n OPEC oil price\ \ annually 1960-2024\n " - text: 'RUSSELL WILSON OF THE SEATTLE SEAHAWKS — DURING SUPER BOWL XLVIII ' pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8083333333333333 name: Accuracy - type: precision value: 0.7894736842105263 name: Precision - type: recall value: 0.8035714285714286 name: Recall - type: f1 value: 0.7964601769911505 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | False | | | True | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.8083 | 0.7895 | 0.8036 | 0.7965 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Quarterly Earnings") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 8.2229 | 242 | | Label | Training Sample Count | |:------|:----------------------| | False | 236 | | True | 244 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - run_name: PG-OCR-test-2 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0008 | 1 | 0.3892 | - | | 0.0417 | 50 | 0.2262 | - | | 0.0833 | 100 | 0.2138 | - | | 0.125 | 150 | 0.1058 | - | | 0.1667 | 200 | 0.1327 | - | | 0.2083 | 250 | 0.098 | - | | 0.25 | 300 | 0.0719 | - | | 0.2917 | 350 | 0.0634 | - | | 0.3333 | 400 | 0.0021 | - | | 0.375 | 450 | 0.0084 | - | | 0.4167 | 500 | 0.0799 | - | | 0.4583 | 550 | 0.0822 | - | | 0.5 | 600 | 0.0775 | - | | 0.5417 | 650 | 0.0114 | - | | 0.5833 | 700 | 0.0013 | - | | 0.625 | 750 | 0.0121 | - | | 0.6667 | 800 | 0.1034 | - | | 0.7083 | 850 | 0.0539 | - | | 0.75 | 900 | 0.0076 | - | | 0.7917 | 950 | 0.0114 | - | | 0.8333 | 1000 | 0.0223 | - | | 0.875 | 1050 | 0.0208 | - | | 0.9167 | 1100 | 0.0246 | - | | 0.9583 | 1150 | 0.0098 | - | | 1.0 | 1200 | 0.003 | - | ### Framework Versions - Python: 3.11.0 - SetFit: 1.0.3 - Sentence Transformers: 2.3.0 - Transformers: 4.37.2 - PyTorch: 2.2.1+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```