---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: Maintenance to the cambridge.org website is scheduled for 14 March at 12am
– 8am GMT.
- text: Quarterly Earnings
- text: 'So set sail for Long John Silver''s and discover why wa''re America''s most
popular sealood vestments antannro fi '
- text: "\n OPEC oil price\
\ annually 1960-2024\n "
- text: 'RUSSELL WILSON OF THE SEATTLE SEAHAWKS — DURING SUPER BOWL XLVIII '
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8083333333333333
name: Accuracy
- type: precision
value: 0.7894736842105263
name: Precision
- type: recall
value: 0.8035714285714286
name: Recall
- type: f1
value: 0.7964601769911505
name: F1
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| False |
- 'Learn more about this provider'
- 'Verletzte und Festnahmen'
- 'Bulgaria'
|
| True | - 'Free Quotes on Doors '
- 'Pakistan Cricket Board, Gaddafi Stadium, Ferozepur Road, Lahore, Pakistan. E-Mail: careers@pcb.com.pk '
- "‘here's a new predator in the urban jungle "
|
## Evaluation
### Metrics
| Label | Accuracy | Precision | Recall | F1 |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.8083 | 0.7895 | 0.8036 | 0.7965 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Quarterly Earnings")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 8.2229 | 242 |
| Label | Training Sample Count |
|:------|:----------------------|
| False | 236 |
| True | 244 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: PG-OCR-test-2
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3892 | - |
| 0.0417 | 50 | 0.2262 | - |
| 0.0833 | 100 | 0.2138 | - |
| 0.125 | 150 | 0.1058 | - |
| 0.1667 | 200 | 0.1327 | - |
| 0.2083 | 250 | 0.098 | - |
| 0.25 | 300 | 0.0719 | - |
| 0.2917 | 350 | 0.0634 | - |
| 0.3333 | 400 | 0.0021 | - |
| 0.375 | 450 | 0.0084 | - |
| 0.4167 | 500 | 0.0799 | - |
| 0.4583 | 550 | 0.0822 | - |
| 0.5 | 600 | 0.0775 | - |
| 0.5417 | 650 | 0.0114 | - |
| 0.5833 | 700 | 0.0013 | - |
| 0.625 | 750 | 0.0121 | - |
| 0.6667 | 800 | 0.1034 | - |
| 0.7083 | 850 | 0.0539 | - |
| 0.75 | 900 | 0.0076 | - |
| 0.7917 | 950 | 0.0114 | - |
| 0.8333 | 1000 | 0.0223 | - |
| 0.875 | 1050 | 0.0208 | - |
| 0.9167 | 1100 | 0.0246 | - |
| 0.9583 | 1150 | 0.0098 | - |
| 1.0 | 1200 | 0.003 | - |
### Framework Versions
- Python: 3.11.0
- SetFit: 1.0.3
- Sentence Transformers: 2.3.0
- Transformers: 4.37.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```