# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from enum import IntEnum, Enum from api.utils.file_utils import get_project_base_directory from api.utils.log_utils import LoggerFactory, getLogger # Logger LoggerFactory.set_directory( os.path.join( get_project_base_directory(), "logs", "api")) # {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0} LoggerFactory.LEVEL = 30 stat_logger = getLogger("stat") access_logger = getLogger("access") database_logger = getLogger("database") chat_logger = getLogger("chat") from rag.utils.es_conn import ELASTICSEARCH from rag.nlp import search from graphrag import search as kg_search from api.utils import get_base_config, decrypt_database_config API_VERSION = "v1" RAG_FLOW_SERVICE_NAME = "ragflow" SERVER_MODULE = "rag_flow_server.py" TEMP_DIRECTORY = os.path.join(get_project_base_directory(), "temp") RAG_FLOW_CONF_PATH = os.path.join(get_project_base_directory(), "conf") SUBPROCESS_STD_LOG_NAME = "std.log" ERROR_REPORT = True ERROR_REPORT_WITH_PATH = False MAX_TIMESTAMP_INTERVAL = 60 SESSION_VALID_PERIOD = 7 * 24 * 60 * 60 REQUEST_TRY_TIMES = 3 REQUEST_WAIT_SEC = 2 REQUEST_MAX_WAIT_SEC = 300 USE_REGISTRY = get_base_config("use_registry") default_llm = { "Tongyi-Qianwen": { "chat_model": "qwen-plus", "embedding_model": "text-embedding-v2", "image2text_model": "qwen-vl-max", "asr_model": "paraformer-realtime-8k-v1", }, "OpenAI": { "chat_model": "gpt-3.5-turbo", "embedding_model": "text-embedding-ada-002", "image2text_model": "gpt-4-vision-preview", "asr_model": "whisper-1", }, "Azure-OpenAI": { "chat_model": "azure-gpt-35-turbo", "embedding_model": "azure-text-embedding-ada-002", "image2text_model": "azure-gpt-4-vision-preview", "asr_model": "azure-whisper-1", }, "ZHIPU-AI": { "chat_model": "glm-3-turbo", "embedding_model": "embedding-2", "image2text_model": "glm-4v", "asr_model": "", }, "Ollama": { "chat_model": "qwen-14B-chat", "embedding_model": "flag-embedding", "image2text_model": "", "asr_model": "", }, "Moonshot": { "chat_model": "moonshot-v1-8k", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "DeepSeek": { "chat_model": "deepseek-chat", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "VolcEngine": { "chat_model": "", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "BAAI": { "chat_model": "", "embedding_model": "BAAI/bge-large-zh-v1.5", "image2text_model": "", "asr_model": "", "rerank_model": "BAAI/bge-reranker-v2-m3", } } LLM = get_base_config("user_default_llm", {}) LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen") LLM_BASE_URL = LLM.get("base_url") if LLM_FACTORY not in default_llm: print( "\33[91m【ERROR】\33[0m:", f"LLM factory {LLM_FACTORY} has not supported yet, switch to 'Tongyi-Qianwen/QWen' automatically, and please check the API_KEY in service_conf.yaml.") LLM_FACTORY = "Tongyi-Qianwen" CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] RERANK_MDL = default_llm["BAAI"]["rerank_model"] ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] API_KEY = LLM.get("api_key", "") PARSERS = LLM.get( "parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email") # distribution DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False) RAG_FLOW_UPDATE_CHECK = False HOST = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1") HTTP_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port") SECRET_KEY = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get( "secret_key", "infiniflow") TOKEN_EXPIRE_IN = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get( "token_expires_in", 3600) NGINX_HOST = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get( "nginx", {}).get("host") or HOST NGINX_HTTP_PORT = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get( "nginx", {}).get("http_port") or HTTP_PORT RANDOM_INSTANCE_ID = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get( "random_instance_id", False) PROXY = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("proxy") PROXY_PROTOCOL = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("protocol") DATABASE = decrypt_database_config(name="mysql") # Switch # upload UPLOAD_DATA_FROM_CLIENT = True # authentication AUTHENTICATION_CONF = get_base_config("authentication", {}) # client CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get( "client", {}).get( "switch", False) HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key") GITHUB_OAUTH = get_base_config("oauth", {}).get("github") FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu") WECHAT_OAUTH = get_base_config("oauth", {}).get("wechat") # site SITE_AUTHENTICATION = AUTHENTICATION_CONF.get("site", {}).get("switch", False) # permission PERMISSION_CONF = get_base_config("permission", {}) PERMISSION_SWITCH = PERMISSION_CONF.get("switch") COMPONENT_PERMISSION = PERMISSION_CONF.get("component") DATASET_PERMISSION = PERMISSION_CONF.get("dataset") HOOK_MODULE = get_base_config("hook_module") HOOK_SERVER_NAME = get_base_config("hook_server_name") ENABLE_MODEL_STORE = get_base_config('enable_model_store', False) # authentication USE_AUTHENTICATION = False USE_DATA_AUTHENTICATION = False AUTOMATIC_AUTHORIZATION_OUTPUT_DATA = True USE_DEFAULT_TIMEOUT = False AUTHENTICATION_DEFAULT_TIMEOUT = 7 * 24 * 60 * 60 # s PRIVILEGE_COMMAND_WHITELIST = [] CHECK_NODES_IDENTITY = False retrievaler = search.Dealer(ELASTICSEARCH) kg_retrievaler = kg_search.KGSearch(ELASTICSEARCH) class CustomEnum(Enum): @classmethod def valid(cls, value): try: cls(value) return True except BaseException: return False @classmethod def values(cls): return [member.value for member in cls.__members__.values()] @classmethod def names(cls): return [member.name for member in cls.__members__.values()] class PythonDependenceName(CustomEnum): Rag_Source_Code = "python" Python_Env = "miniconda" class ModelStorage(CustomEnum): REDIS = "redis" MYSQL = "mysql" class RetCode(IntEnum, CustomEnum): SUCCESS = 0 NOT_EFFECTIVE = 10 EXCEPTION_ERROR = 100 ARGUMENT_ERROR = 101 DATA_ERROR = 102 OPERATING_ERROR = 103 CONNECTION_ERROR = 105 RUNNING = 106 PERMISSION_ERROR = 108 AUTHENTICATION_ERROR = 109 UNAUTHORIZED = 401 SERVER_ERROR = 500