from jina import Deployment from docarray import BaseDoc from jina import Executor, requests from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import argparse import torch class Prompt(BaseDoc): message: list[dict] gen_conf: dict class Generation(BaseDoc): text: str tokenizer = None model_name = "" class TokenStreamingExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) self.model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype="auto" ) @requests(on="/chat") async def generate(self, doc: Prompt, **kwargs) -> Generation: text = tokenizer.apply_chat_template( doc.message, tokenize=False, ) inputs = tokenizer([text], return_tensors="pt") generation_config = GenerationConfig( **doc.gen_conf, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id ) generated_ids = self.model.generate( inputs.input_ids, generation_config=generation_config ) generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] yield Generation(text=response) @requests(on="/stream") async def task(self, doc: Prompt, **kwargs) -> Generation: text = tokenizer.apply_chat_template( doc.message, tokenize=False, ) input = tokenizer([text], return_tensors="pt") input_len = input["input_ids"].shape[1] max_new_tokens = 512 if "max_new_tokens" in doc.gen_conf: max_new_tokens = doc.gen_conf.pop("max_new_tokens") generation_config = GenerationConfig( **doc.gen_conf, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id ) for _ in range(max_new_tokens): output = self.model.generate( **input, max_new_tokens=1, generation_config=generation_config ) if output[0][-1] == tokenizer.eos_token_id: break yield Generation( text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True) ) input = { "input_ids": output, "attention_mask": torch.ones(1, len(output[0])), } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, help="Model name or path") parser.add_argument("--port", default=12345, type=int, help="Jina serving port") args = parser.parse_args() model_name = args.model_name tokenizer = AutoTokenizer.from_pretrained(args.model_name) with Deployment( uses=TokenStreamingExecutor, port=args.port, protocol="grpc" ) as dep: dep.block()