# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from typing import Optional import threading import requests from huggingface_hub import snapshot_download from openai.lib.azure import AzureOpenAI from zhipuai import ZhipuAI import os from abc import ABC from ollama import Client import dashscope from openai import OpenAI from FlagEmbedding import FlagModel import torch import numpy as np import asyncio from api.utils.file_utils import get_home_cache_dir from rag.utils import num_tokens_from_string, truncate import google.generativeai as genai class Base(ABC): def __init__(self, key, model_name): pass def encode(self, texts: list, batch_size=32): raise NotImplementedError("Please implement encode method!") def encode_queries(self, text: str): raise NotImplementedError("Please implement encode method!") class DefaultEmbedding(Base): _model = None _model_lock = threading.Lock() def __init__(self, key, model_name, **kwargs): """ If you have trouble downloading HuggingFace models, -_^ this might help!! For Linux: export HF_ENDPOINT=https://hf-mirror.com For Windows: Good luck ^_- """ if not DefaultEmbedding._model: with DefaultEmbedding._model_lock: if not DefaultEmbedding._model: try: DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available()) except Exception as e: model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), local_dir_use_symlinks=False) DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available()) self._model = DefaultEmbedding._model def encode(self, texts: list, batch_size=32): texts = [truncate(t, 2048) for t in texts] token_count = 0 for t in texts: token_count += num_tokens_from_string(t) res = [] for i in range(0, len(texts), batch_size): res.extend(self._model.encode(texts[i:i + batch_size]).tolist()) return np.array(res), token_count def encode_queries(self, text: str): token_count = num_tokens_from_string(text) return self._model.encode_queries([text]).tolist()[0], token_count class OpenAIEmbed(Base): def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"): if not base_url: base_url = "https://api.openai.com/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name def encode(self, texts: list, batch_size=32): texts = [truncate(t, 8196) for t in texts] res = self.client.embeddings.create(input=texts, model=self.model_name) return np.array([d.embedding for d in res.data] ), res.usage.total_tokens def encode_queries(self, text): res = self.client.embeddings.create(input=[truncate(text, 8196)], model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class LocalAIEmbed(Base): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("Local embedding model url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="empty", base_url=base_url) self.model_name = model_name.split("___")[0] def encode(self, texts: list, batch_size=32): res = self.client.embeddings.create(input=texts, model=self.model_name) return ( np.array([d.embedding for d in res.data]), 1024, ) # local embedding for LmStudio donot count tokens def encode_queries(self, text): embds, cnt = self.encode([text]) return np.array(embds[0]), cnt class AzureEmbed(OpenAIEmbed): def __init__(self, key, model_name, **kwargs): self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") self.model_name = model_name class BaiChuanEmbed(OpenAIEmbed): def __init__(self, key, model_name='Baichuan-Text-Embedding', base_url='https://api.baichuan-ai.com/v1'): if not base_url: base_url = "https://api.baichuan-ai.com/v1" super().__init__(key, model_name, base_url) class QWenEmbed(Base): def __init__(self, key, model_name="text_embedding_v2", **kwargs): dashscope.api_key = key self.model_name = model_name def encode(self, texts: list, batch_size=10): import dashscope try: res = [] token_count = 0 texts = [truncate(t, 2048) for t in texts] for i in range(0, len(texts), batch_size): resp = dashscope.TextEmbedding.call( model=self.model_name, input=texts[i:i + batch_size], text_type="document" ) embds = [[] for _ in range(len(resp["output"]["embeddings"]))] for e in resp["output"]["embeddings"]: embds[e["text_index"]] = e["embedding"] res.extend(embds) token_count += resp["usage"]["total_tokens"] return np.array(res), token_count except Exception as e: raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) return np.array([]), 0 def encode_queries(self, text): try: resp = dashscope.TextEmbedding.call( model=self.model_name, input=text[:2048], text_type="query" ) return np.array(resp["output"]["embeddings"][0] ["embedding"]), resp["usage"]["total_tokens"] except Exception as e: raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) return np.array([]), 0 class ZhipuEmbed(Base): def __init__(self, key, model_name="embedding-2", **kwargs): self.client = ZhipuAI(api_key=key) self.model_name = model_name def encode(self, texts: list, batch_size=32): arr = [] tks_num = 0 for txt in texts: res = self.client.embeddings.create(input=txt, model=self.model_name) arr.append(res.data[0].embedding) tks_num += res.usage.total_tokens return np.array(arr), tks_num def encode_queries(self, text): res = self.client.embeddings.create(input=text, model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class OllamaEmbed(Base): def __init__(self, key, model_name, **kwargs): self.client = Client(host=kwargs["base_url"]) self.model_name = model_name def encode(self, texts: list, batch_size=32): arr = [] tks_num = 0 for txt in texts: res = self.client.embeddings(prompt=txt, model=self.model_name) arr.append(res["embedding"]) tks_num += 128 return np.array(arr), tks_num def encode_queries(self, text): res = self.client.embeddings(prompt=text, model=self.model_name) return np.array(res["embedding"]), 128 class FastEmbed(Base): _model = None def __init__( self, key: Optional[str] = None, model_name: str = "BAAI/bge-small-en-v1.5", cache_dir: Optional[str] = None, threads: Optional[int] = None, **kwargs, ): from fastembed import TextEmbedding if not FastEmbed._model: self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs) def encode(self, texts: list, batch_size=32): # Using the internal tokenizer to encode the texts and get the total # number of tokens encodings = self._model.model.tokenizer.encode_batch(texts) total_tokens = sum(len(e) for e in encodings) embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)] return np.array(embeddings), total_tokens def encode_queries(self, text: str): # Using the internal tokenizer to encode the texts and get the total # number of tokens encoding = self._model.model.tokenizer.encode(text) embedding = next(self._model.query_embed(text)).tolist() return np.array(embedding), len(encoding.ids) class XinferenceEmbed(Base): def __init__(self, key, model_name="", base_url=""): self.client = OpenAI(api_key="xxx", base_url=base_url) self.model_name = model_name def encode(self, texts: list, batch_size=32): res = self.client.embeddings.create(input=texts, model=self.model_name) return np.array([d.embedding for d in res.data] ), res.usage.total_tokens def encode_queries(self, text): res = self.client.embeddings.create(input=[text], model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class YoudaoEmbed(Base): _client = None def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs): from BCEmbedding import EmbeddingModel as qanthing if not YoudaoEmbed._client: try: print("LOADING BCE...") YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join( get_home_cache_dir(), "bce-embedding-base_v1")) except Exception as e: YoudaoEmbed._client = qanthing( model_name_or_path=model_name.replace( "maidalun1020", "InfiniFlow")) def encode(self, texts: list, batch_size=10): res = [] token_count = 0 for t in texts: token_count += num_tokens_from_string(t) for i in range(0, len(texts), batch_size): embds = YoudaoEmbed._client.encode(texts[i:i + batch_size]) res.extend(embds) return np.array(res), token_count def encode_queries(self, text): embds = YoudaoEmbed._client.encode([text]) return np.array(embds[0]), num_tokens_from_string(text) class JinaEmbed(Base): def __init__(self, key, model_name="jina-embeddings-v2-base-zh", base_url="https://api.jina.ai/v1/embeddings"): self.base_url = "https://api.jina.ai/v1/embeddings" self.headers = { "Content-Type": "application/json", "Authorization": f"Bearer {key}" } self.model_name = model_name def encode(self, texts: list, batch_size=None): texts = [truncate(t, 8196) for t in texts] data = { "model": self.model_name, "input": texts, 'encoding_type': 'float' } res = requests.post(self.base_url, headers=self.headers, json=data).json() return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"] def encode_queries(self, text): embds, cnt = self.encode([text]) return np.array(embds[0]), cnt class InfinityEmbed(Base): _model = None def __init__( self, model_names: list[str] = ("BAAI/bge-small-en-v1.5",), engine_kwargs: dict = {}, key = None, ): from infinity_emb import EngineArgs from infinity_emb.engine import AsyncEngineArray self._default_model = model_names[0] self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names]) async def _embed(self, sentences: list[str], model_name: str = ""): if not model_name: model_name = self._default_model engine = self.engine_array[model_name] was_already_running = engine.is_running if not was_already_running: await engine.astart() embeddings, usage = await engine.embed(sentences=sentences) if not was_already_running: await engine.astop() return embeddings, usage def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]: # Using the internal tokenizer to encode the texts and get the total # number of tokens embeddings, usage = asyncio.run(self._embed(texts, model_name)) return np.array(embeddings), usage def encode_queries(self, text: str) -> tuple[np.ndarray, int]: # Using the internal tokenizer to encode the texts and get the total # number of tokens return self.encode([text]) class MistralEmbed(Base): def __init__(self, key, model_name="mistral-embed", base_url=None): from mistralai.client import MistralClient self.client = MistralClient(api_key=key) self.model_name = model_name def encode(self, texts: list, batch_size=32): texts = [truncate(t, 8196) for t in texts] res = self.client.embeddings(input=texts, model=self.model_name) return np.array([d.embedding for d in res.data] ), res.usage.total_tokens def encode_queries(self, text): res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class BedrockEmbed(Base): def __init__(self, key, model_name, **kwargs): import boto3 self.bedrock_ak = eval(key).get('bedrock_ak', '') self.bedrock_sk = eval(key).get('bedrock_sk', '') self.bedrock_region = eval(key).get('bedrock_region', '') self.model_name = model_name self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) def encode(self, texts: list, batch_size=32): texts = [truncate(t, 8196) for t in texts] embeddings = [] token_count = 0 for text in texts: if self.model_name.split('.')[0] == 'amazon': body = {"inputText": text} elif self.model_name.split('.')[0] == 'cohere': body = {"texts": [text], "input_type": 'search_document'} response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body)) model_response = json.loads(response["body"].read()) embeddings.extend([model_response["embedding"]]) token_count += num_tokens_from_string(text) return np.array(embeddings), token_count def encode_queries(self, text): embeddings = [] token_count = num_tokens_from_string(text) if self.model_name.split('.')[0] == 'amazon': body = {"inputText": truncate(text, 8196)} elif self.model_name.split('.')[0] == 'cohere': body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'} response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body)) model_response = json.loads(response["body"].read()) embeddings.extend([model_response["embedding"]]) return np.array(embeddings), token_count class GeminiEmbed(Base): def __init__(self, key, model_name='models/text-embedding-004', **kwargs): genai.configure(api_key=key) self.model_name = 'models/' + model_name def encode(self, texts: list, batch_size=32): texts = [truncate(t, 2048) for t in texts] token_count = sum(num_tokens_from_string(text) for text in texts) result = genai.embed_content( model=self.model_name, content=texts, task_type="retrieval_document", title="Embedding of list of strings") return np.array(result['embedding']),token_count def encode_queries(self, text): result = genai.embed_content( model=self.model_name, content=truncate(text,2048), task_type="retrieval_document", title="Embedding of single string") token_count = num_tokens_from_string(text) return np.array(result['embedding']),token_count class NvidiaEmbed(Base): def __init__( self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings" ): if not base_url: base_url = "https://integrate.api.nvidia.com/v1/embeddings" self.api_key = key self.base_url = base_url self.headers = { "accept": "application/json", "Content-Type": "application/json", "authorization": f"Bearer {self.api_key}", } self.model_name = model_name if model_name == "nvidia/embed-qa-4": self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings" self.model_name = "NV-Embed-QA" if model_name == "snowflake/arctic-embed-l": self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings" def encode(self, texts: list, batch_size=None): payload = { "input": texts, "input_type": "query", "model": self.model_name, "encoding_format": "float", "truncate": "END", } res = requests.post(self.base_url, headers=self.headers, json=payload).json() return ( np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"], ) def encode_queries(self, text): embds, cnt = self.encode([text]) return np.array(embds[0]), cnt class LmStudioEmbed(LocalAIEmbed): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="lm-studio", base_url=base_url) self.model_name = model_name class OpenAI_APIEmbed(OpenAIEmbed): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name.split("___")[0] class CoHereEmbed(Base): def __init__(self, key, model_name, base_url=None): from cohere import Client self.client = Client(api_key=key) self.model_name = model_name def encode(self, texts: list, batch_size=32): res = self.client.embed( texts=texts, model=self.model_name, input_type="search_query", embedding_types=["float"], ) return np.array([d for d in res.embeddings.float]), int( res.meta.billed_units.input_tokens ) def encode_queries(self, text): res = self.client.embed( texts=[text], model=self.model_name, input_type="search_query", embedding_types=["float"], ) return np.array([d for d in res.embeddings.float]), int( res.meta.billed_units.input_tokens )