group: shape name: shape_recon load: batch_size: 28 debug: false profile: false image_size: [224,224] gpu: 0 max_epoch: 15 output_root: output resume: false seed: 0 yaml: pretrain: depth: weights/depth.ckpt arch: # general num_heads: 8 latent_dim: 256 win_size: 16 # depth depth: encoder: resnet n_blocks: 12 dsp: 2 pretrained: model/depth/pretrained_weights/omnidata_dpt_depth_v2.ckpt # rgb rgb: encoder: n_blocks: 12 # implicit impl: n_channels: 256 # attention-related att_blocks: 2 mlp_ratio: 4. posenc_perlayer: false # mlp-related mlp_layers: 8 posenc_3D: 0 skip_in: [2,4,6] eval: batch_size: 2 brute_force: false n_vis: 50 vox_res: 64 num_points: 10000 range: [-1.5,1.5] icp: false f_thresholds: [0.005, 0.01, 0.02, 0.05, 0.1, 0.2] data: num_classes_test: 15 max_img_cat: dataset_train: synthetic dataset_test: synthetic num_workers: 6 bgcolor: 1 pix3d: cat: ocrtoc: cat: erode_mask: synthetic: subset: objaverse_LVIS,ShapeNet55 percentage: 1 train_sub: val_sub: training: n_sdf_points: 4096 shape_loss: impt_weight: 1 impt_thres: 0.01 depth_loss: grad_reg: 0.1 depth_inv: true mask_shrink: false loss_weight: shape: 1 depth: intr: optim: lr: 3.e-5 lr_ft: 1.e-5 weight_decay: 0.05 fix_dpt: false fix_clip: true clip_norm: amp: false accum: 1 sched: false tb: num_images: [4,8] freq: print: 200 print_eval: 100 scalar: 1000 # iterations vis: 1000 # iterations save_vis: 1000 ckpt_latest: 1000 # iterations eval: 1