Spaces:
Build error
Build error
File size: 31,971 Bytes
414b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import numpy as np
import os, time, datetime
import torch
import torch.utils.tensorboard
import torch.profiler
import importlib
import shutil
import utils.util as util
import utils.util_vis as util_vis
import utils.eval_3D as eval_3D
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.util import print_eval, setup, cleanup
from utils.util import EasyDict as edict
from copy import deepcopy
from model.compute_graph import graph_shape
# ============================ main engine for training and evaluation ============================
class Runner():
def __init__(self, opt):
super().__init__()
if os.path.isdir(opt.output_path) and opt.resume == False and opt.device == 0:
for filename in os.listdir(opt.output_path):
if "tfevents" in filename: os.remove(os.path.join(opt.output_path, filename))
if "html" in filename: os.remove(os.path.join(opt.output_path, filename))
if "vis" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
if "embedding" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
if opt.device == 0:
os.makedirs(opt.output_path,exist_ok=True)
setup(opt.device, opt.world_size, opt.port)
opt.batch_size = opt.batch_size // opt.world_size
def get_viz_data(self, opt):
# get data for visualization
viz_data_list = []
sample_range = len(self.viz_loader)
viz_interval = sample_range // opt.eval.n_vis
for i in range(sample_range):
current_batch = next(self.viz_loader_iter)
if i % viz_interval != 0: continue
viz_data_list.append(current_batch)
return viz_data_list
def load_dataset(self, opt, eval_split="test"):
data_train = importlib.import_module('data.{}'.format(opt.data.dataset_train))
data_test = importlib.import_module('data.{}'.format(opt.data.dataset_test))
if opt.device == 0: print("loading training data...")
self.train_data = data_train.Dataset(opt, split="train")
self.train_loader = self.train_data.setup_loader(opt, shuffle=True, use_ddp=True, drop_last=True)
self.num_batches = len(self.train_loader)
if opt.device == 0: print("loading test data...")
self.test_data = data_test.Dataset(opt, split=eval_split)
self.test_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=True, drop_last=True, batch_size=opt.eval.batch_size)
self.num_batches_test = len(self.test_loader)
if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
self.aux_test_dataset = torch.utils.data.Subset(self.test_data,
range(len(self.test_loader.sampler) * opt.world_size, len(self.test_data)))
self.aux_test_loader = torch.utils.data.DataLoader(
self.aux_test_dataset, batch_size=opt.eval.batch_size, shuffle=False, drop_last=False,
num_workers=opt.data.num_workers)
if opt.device == 0:
print("creating data for visualization...")
self.viz_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=False, drop_last=False, batch_size=1)
self.viz_loader_iter = iter(self.viz_loader)
self.viz_data = self.get_viz_data(opt)
def build_networks(self, opt):
if opt.device == 0: print("building networks...")
self.graph = DDP(graph_shape.Graph(opt).to(opt.device), device_ids=[opt.device], find_unused_parameters=(not opt.optim.fix_dpt or not opt.optim.fix_clip))
# =================================================== set up training =========================================================
def setup_optimizer(self, opt):
if opt.device == 0: print("setting up optimizers...")
if opt.optim.fix_dpt:
# when we do not need to train the dpt depth, every param will start from scratch
scratch_param_decay = []
scratch_param_nodecay = []
# loop over all params
for name, param in self.graph.named_parameters():
# skip and fixed params
if not param.requires_grad or 'dpt_depth' in name or 'intr_' in name:
continue
# do not add wd on bias or low-dim params
if param.ndim <= 1 or name.endswith(".bias"):
scratch_param_nodecay.append(param)
# print("{} -> scratch_param_nodecay".format(name))
else:
scratch_param_decay.append(param)
# print("{} -> scratch_param_decay".format(name))
# create the optim dictionary
optim_dict = [
{'params': scratch_param_nodecay, 'lr': opt.optim.lr, 'weight_decay': 0.},
{'params': scratch_param_decay, 'lr': opt.optim.lr, 'weight_decay': opt.optim.weight_decay}
]
else:
# when we need to train dpt as well, related params should go to finetune list
finetune_param_nodecay = []
scratch_param_nodecay = []
finetune_param_decay = []
scratch_param_decay = []
for name, param in self.graph.named_parameters():
# skip and fixed params
if not param.requires_grad:
continue
# put dpt params into finetune list
if 'dpt_depth' in name or 'intr_' in name:
if param.ndim <= 1 or name.endswith(".bias"):
# print("{} -> finetune_param_nodecay".format(name))
finetune_param_nodecay.append(param)
else:
finetune_param_decay.append(param)
# print("{} -> finetune_param_decay".format(name))
# all other params go to scratch list
else:
if param.ndim <= 1 or name.endswith(".bias"):
scratch_param_nodecay.append(param)
# print("{} -> scratch_param_nodecay".format(name))
else:
scratch_param_decay.append(param)
# print("{} -> scratch_param_decay".format(name))
# create the optim dictionary
optim_dict = [
{'params': finetune_param_nodecay, 'lr': opt.optim.lr_ft, 'weight_decay': 0.},
{'params': finetune_param_decay, 'lr': opt.optim.lr_ft, 'weight_decay': opt.optim.weight_decay},
{'params': scratch_param_nodecay, 'lr': opt.optim.lr, 'weight_decay': 0.},
{'params': scratch_param_decay, 'lr': opt.optim.lr, 'weight_decay': opt.optim.weight_decay}
]
self.optim = torch.optim.AdamW(optim_dict, betas=(0.9, 0.95))
if opt.optim.sched:
self.sched = torch.optim.lr_scheduler.CosineAnnealingLR(self.optim, opt.max_epoch)
if opt.optim.amp:
self.scaler = torch.cuda.amp.GradScaler()
def restore_checkpoint(self, opt, best=False, evaluate=False):
epoch_start, iter_start = None, None
if opt.resume:
if opt.device == 0: print("resuming from previous checkpoint...")
epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, resume=opt.resume, best=best, evaluate=evaluate)
self.best_val = best_val
self.best_ep = best_ep
elif opt.load is not None:
if opt.device == 0: print("loading weights from checkpoint {}...".format(opt.load))
epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, load_name=opt.load)
else:
if opt.device == 0: print("initializing weights from scratch...")
self.epoch_start = epoch_start or 0
self.iter_start = iter_start or 0
def setup_visualizer(self, opt, test=False):
if opt.device == 0:
print("setting up visualizers...")
if opt.tb:
if test == False:
self.tb = torch.utils.tensorboard.SummaryWriter(log_dir=opt.output_path, flush_secs=10)
else:
embedding_folder = os.path.join(opt.output_path, 'embedding')
os.makedirs(embedding_folder, exist_ok=True)
self.tb = torch.utils.tensorboard.SummaryWriter(log_dir=embedding_folder, flush_secs=10)
def train(self, opt):
# before training
torch.cuda.set_device(opt.device)
torch.cuda.empty_cache()
if opt.device == 0: print("TRAINING START")
self.train_metric_logger = util.MetricLogger(delimiter=" ")
self.train_metric_logger.add_meter('lr', util.SmoothedValue(window_size=1, fmt='{value:.6f}'))
self.iter_skip = self.iter_start % len(self.train_loader)
self.it = self.iter_start
self.skip_dis = False
if not opt.resume:
self.best_val = np.inf
self.best_ep = 1
# training
if self.iter_start == 0 and not opt.debug: self.evaluate(opt, ep=0, training=True)
for self.ep in range(self.epoch_start, opt.max_epoch):
self.train_epoch(opt)
# after training
if opt.device == 0: self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep)
if opt.tb and opt.device == 0:
self.tb.flush()
self.tb.close()
if opt.device == 0:
print("TRAINING DONE")
print("Best CD: %.4f @ epoch %d" % (self.best_val, self.best_ep))
cleanup()
def train_epoch(self, opt):
# before train epoch
self.train_loader.sampler.set_epoch(self.ep)
if opt.device == 0:
print("training epoch {}".format(self.ep+1))
batch_progress = range(self.num_batches)
self.graph.train()
# train epoch
loader = iter(self.train_loader)
if opt.debug and opt.profile:
with torch.profiler.profile(
schedule=torch.profiler.schedule(wait=3, warmup=3, active=5, repeat=2),
on_trace_ready=torch.profiler.tensorboard_trace_handler('debug/profiler_log'),
record_shapes=True,
profile_memory=True,
with_stack=False
) as prof:
for batch_id in batch_progress:
if batch_id >= (1 + 1 + 3) * 2:
# exit the program after 2 iterations of the warmup, active, and repeat steps
exit()
# if resuming from previous checkpoint, skip until the last iteration number is reached
if self.iter_skip>0:
self.iter_skip -= 1
continue
batch = next(loader)
# train iteration
var = edict(batch)
opt.H, opt.W = opt.image_size
var = util.move_to_device(var, opt.device)
loss = self.train_iteration(opt, var, batch_progress)
prof.step()
else:
for batch_id in batch_progress:
# if resuming from previous checkpoint, skip until the last iteration number is reached
if self.iter_skip>0:
self.iter_skip -= 1
continue
batch = next(loader)
# train iteration
var = edict(batch)
opt.H, opt.W = opt.image_size
var = util.move_to_device(var, opt.device)
loss = self.train_iteration(opt, var, batch_progress)
# after train epoch
if opt.optim.sched: self.sched.step()
if (self.ep + 1) % opt.freq.eval == 0:
if opt.device == 0: print("validating epoch {}".format(self.ep+1))
current_val = self.evaluate(opt, ep=self.ep+1, training=True)
if current_val < self.best_val and opt.device == 0:
self.best_val = current_val
self.best_ep = self.ep + 1
self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep, best=True, latest=True)
def train_iteration(self, opt, var, batch_progress):
# before train iteration
torch.distributed.barrier()
# train iteration
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=opt.optim.amp):
var, loss = self.graph.forward(opt, var, training=True, get_loss=True)
loss = self.summarize_loss(opt, var, loss)
loss_scaled = loss.all / opt.optim.accum
# backward
if opt.optim.amp:
self.scaler.scale(loss_scaled).backward()
# skip update if accumulating gradient
if (self.it + 1) % opt.optim.accum == 0:
self.scaler.unscale_(self.optim)
# gradient clipping
if opt.optim.clip_norm:
norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
if opt.debug: print("Grad norm: {}".format(norm))
self.scaler.step(self.optim)
self.scaler.update()
self.optim.zero_grad()
else:
loss_scaled.backward()
if (self.it + 1) % opt.optim.accum == 0:
if opt.optim.clip_norm:
norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
if opt.debug: print("Grad norm: {}".format(norm))
self.optim.step()
self.optim.zero_grad()
# after train iteration
lr = self.sched.get_last_lr()[0] if opt.optim.sched else opt.optim.lr
self.train_metric_logger.update(lr=lr)
self.train_metric_logger.update(loss=loss.all)
if opt.device == 0:
self.graph.eval()
# if (self.it) % opt.freq.vis == 0: self.visualize(opt, var, step=self.it, split="train")
if (self.it) % opt.freq.ckpt_latest == 0 and not opt.debug:
self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep, latest=True)
if (self.it) % opt.freq.scalar == 0 and not opt.debug:
self.log_scalars(opt, var, loss, step=self.it, split="train")
if (self.it) % (opt.freq.save_vis * (self.it//10000*10+1)) == 0 and not opt.debug:
self.vis_train_iter(opt)
if (self.it) % opt.freq.print == 0:
print('[{}] '.format(datetime.datetime.now().time()), end='')
print(f'Train Iter {self.it}/{self.num_batches*opt.max_epoch}: {self.train_metric_logger}')
self.graph.train()
self.it += 1
return loss
@torch.no_grad()
def vis_train_iter(self, opt):
for i in range(len(self.viz_data)):
var_viz = edict(deepcopy(self.viz_data[i]))
var_viz = util.move_to_device(var_viz, opt.device)
var_viz = self.graph.module(opt, var_viz, training=False, get_loss=False)
eval_3D.eval_metrics(opt, var_viz, self.graph.module.impl_network, vis_only=True)
vis_folder = "vis_log/iter_{}".format(self.it)
os.makedirs("{}/{}".format(opt.output_path, vis_folder), exist_ok=True)
util_vis.dump_images(opt, var_viz.idx, "image_input", var_viz.rgb_input_map, masks=None, from_range=(0, 1), folder=vis_folder)
util_vis.dump_images(opt, var_viz.idx, "mask_input", var_viz.mask_input_map, folder=vis_folder)
util_vis.dump_meshes_viz(opt, var_viz.idx, "mesh_viz", var_viz.mesh_pred, folder=vis_folder)
if 'depth_pred' in var_viz:
util_vis.dump_depths(opt, var_viz.idx, "depth_est", var_viz.depth_pred, var_viz.mask_input_map, rescale=True, folder=vis_folder)
if 'depth_input_map' in var_viz:
util_vis.dump_depths(opt, var_viz.idx, "depth_input", var_viz.depth_input_map, var_viz.mask_input_map, rescale=True, folder=vis_folder)
if 'attn_vis' in var_viz:
util_vis.dump_attentions(opt, var_viz.idx, "attn", var_viz.attn_vis, folder=vis_folder)
if 'gt_surf_points' in var_viz and 'seen_points' in var_viz:
util_vis.dump_pointclouds_compare(opt, var_viz.idx, "seen_surface", var_viz.seen_points, var_viz.gt_surf_points, folder=vis_folder)
def summarize_loss(self, opt, var, loss, non_act_loss_key=[]):
loss_all = 0.
assert("all" not in loss)
# weigh losses
for key in loss:
assert(key in opt.loss_weight)
if opt.loss_weight[key] is not None:
assert not torch.isinf(loss[key].mean()), "loss {} is Inf".format(key)
assert not torch.isnan(loss[key].mean()), "loss {} is NaN".format(key)
loss_all += float(opt.loss_weight[key])*loss[key].mean() if key not in non_act_loss_key else 0.0*loss[key].mean()
loss.update(all=loss_all)
return loss
# =================================================== set up evaluation =========================================================
@torch.no_grad()
def evaluate(self, opt, ep, training=False):
self.graph.eval()
# lists for metrics
cd_accs = []
cd_comps = []
f_scores = []
cat_indices = []
loss_eval = edict()
metric_eval = dict(dist_acc=0., dist_cov=0.)
eval_metric_logger = util.MetricLogger(delimiter=" ")
# result file on the fly
if not training:
assert opt.device == 0
full_results_file = open(os.path.join(opt.output_path, '{}_full_results.txt'.format(opt.data.dataset_test)), 'w')
full_results_file.write("IND, CD, ACC, COMP, ")
full_results_file.write(", ".join(["F-score@{:.2f}".format(opt.eval.f_thresholds[i]*100) for i in range(len(opt.eval.f_thresholds))]))
# dataloader on the test set
with torch.cuda.device(opt.device):
for it, batch in enumerate(self.test_loader):
# inference the model
var = edict(batch)
var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)
# record CD for evaluation
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
# accumulate the scores
cd_accs.append(var.cd_acc)
cd_comps.append(var.cd_comp)
f_scores.append(var.f_score)
cat_indices.append(var.category_label)
eval_metric_logger.update(ACC=dist_acc)
eval_metric_logger.update(COMP=dist_cov)
eval_metric_logger.update(CD=(dist_acc+dist_cov) / 2)
if opt.device == 0 and it % opt.freq.print_eval == 0:
print('[{}] '.format(datetime.datetime.now().time()), end='')
print(f'Eval Iter {it}/{len(self.test_loader)} @ EP {ep}: {eval_metric_logger}')
# write to file
if not training:
full_results_file.write("\n")
full_results_file.write("{:d}".format(var.idx.item()))
full_results_file.write("\t{:.4f}".format((var.cd_acc.item() + var.cd_comp.item()) / 2))
full_results_file.write("\t{:.4f}".format(var.cd_acc.item()))
full_results_file.write("\t{:.4f}".format(var.cd_comp.item()))
full_results_file.write("\t" + "\t".join(["{:.4f}".format(var.f_score[0][i].item()) for i in range(len(opt.eval.f_thresholds))]))
full_results_file.flush()
# dump the result if in eval mode
if not training:
self.dump_results(opt, var, ep, write_new=(it == 0))
# save the predicted mesh for vis data if in train mode
if it == 0 and training and opt.device == 0:
print("visualizing and saving results...")
for i in range(len(self.viz_data)):
var_viz = edict(deepcopy(self.viz_data[i]))
var_viz = self.evaluate_batch(opt, var_viz, ep, it, single_gpu=True)
eval_3D.eval_metrics(opt, var_viz, self.graph.module.impl_network, vis_only=True)
# self.visualize(opt, var_viz, step=ep, split="eval")
self.dump_results(opt, var_viz, ep, train=True)
# write html that organizes the results
util_vis.create_gif_html(os.path.join(opt.output_path, "vis_{}".format(ep)),
os.path.join(opt.output_path, "results_ep{}.html".format(ep)),
skip_every=1)
# collect the eval results into tensors
cd_accs = torch.cat(cd_accs, dim=0)
cd_comps = torch.cat(cd_comps, dim=0)
f_scores = torch.cat(f_scores, dim=0)
cat_indices = torch.cat(cat_indices, dim=0)
if opt.world_size > 1:
# empty tensors for gathering
cd_accs_all = [torch.zeros_like(cd_accs).to(opt.device) for _ in range(opt.world_size)]
cd_comps_all = [torch.zeros_like(cd_comps).to(opt.device) for _ in range(opt.world_size)]
f_scores_all = [torch.zeros_like(f_scores).to(opt.device) for _ in range(opt.world_size)]
cat_indices_all = [torch.zeros_like(cat_indices).long().to(opt.device) for _ in range(opt.world_size)]
# gather the metrics
torch.distributed.barrier()
torch.distributed.all_gather(cd_accs_all, cd_accs)
torch.distributed.all_gather(cd_comps_all, cd_comps)
torch.distributed.all_gather(f_scores_all, f_scores)
torch.distributed.all_gather(cat_indices_all, cat_indices)
cd_accs_all = torch.cat(cd_accs_all, dim=0)
cd_comps_all = torch.cat(cd_comps_all, dim=0)
f_scores_all = torch.cat(f_scores_all, dim=0)
cat_indices_all = torch.cat(cat_indices_all, dim=0)
else:
cd_accs_all = cd_accs
cd_comps_all = cd_comps
f_scores_all = f_scores
cat_indices_all = cat_indices
# handle last batch, if any
if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
cd_accs_all = [cd_accs_all]
cd_comps_all = [cd_comps_all]
f_scores_all = [f_scores_all]
cat_indices_all = [cat_indices_all]
for batch in self.aux_test_loader:
# inference the model
var = edict(batch)
var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)
# record CD for evaluation
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
# accumulate the scores
cd_accs_all.append(var.cd_acc)
cd_comps_all.append(var.cd_comp)
f_scores_all.append(var.f_score)
cat_indices_all.append(var.category_label)
# dump the result if in eval mode
if not training and opt.device == 0:
self.dump_results(opt, var, ep, write_new=(it == 0))
cd_accs_all = torch.cat(cd_accs_all, dim=0)
cd_comps_all = torch.cat(cd_comps_all, dim=0)
f_scores_all = torch.cat(f_scores_all, dim=0)
cat_indices_all = torch.cat(cat_indices_all, dim=0)
assert cd_accs_all.shape[0] == len(self.test_data)
if not training:
full_results_file.close()
# printout and save the metrics
if opt.device == 0:
metric_eval["dist_acc"] = cd_accs_all.mean()
metric_eval["dist_cov"] = cd_comps_all.mean()
# print eval info
print_eval(opt, loss=None, chamfer=(metric_eval["dist_acc"],
metric_eval["dist_cov"]))
val_metric = (metric_eval["dist_acc"] + metric_eval["dist_cov"]) / 2
if training:
# log/visualize results to tb/vis
self.log_scalars(opt, var, loss_eval, metric=metric_eval, step=ep, split="eval")
if not training:
# save the per-cat evaluation metrics if on shapenet
per_cat_cd_file = os.path.join(opt.output_path, 'cd_cat.txt')
with open(per_cat_cd_file, "w") as outfile:
outfile.write("CD Acc Comp Count Cat\n")
for i in range(opt.data.num_classes_test):
if (cat_indices_all==i).sum() == 0:
continue
acc_i = cd_accs_all[cat_indices_all==i].mean().item()
comp_i = cd_comps_all[cat_indices_all==i].mean().item()
counts_cat = torch.sum(cat_indices_all==i)
cd_i = (acc_i + comp_i) / 2
outfile.write("%.4f %.4f %.4f %5d %s\n" % (cd_i, acc_i, comp_i, counts_cat, self.test_data.label2cat[i]))
# print f_scores
f_scores_avg = f_scores_all.mean(dim=0)
print('##############################')
for i in range(len(opt.eval.f_thresholds)):
print('F-score @ %.2f: %.4f' % (opt.eval.f_thresholds[i]*100, f_scores_avg[i].item()))
print('##############################')
# write to file
result_file = os.path.join(opt.output_path, 'quantitative_{}.txt'.format(opt.data.dataset_test))
with open(result_file, "w") as outfile:
outfile.write('CD Acc Comp \n')
outfile.write('%.4f %.4f %.4f\n' % (val_metric, metric_eval["dist_acc"], metric_eval["dist_cov"]))
for i in range(len(opt.eval.f_thresholds)):
outfile.write('F-score @ %.2f: %.4f\n' % (opt.eval.f_thresholds[i]*100, f_scores_avg[i].item()))
# write html that organizes the results
util_vis.create_gif_html(os.path.join(opt.output_path, "dump_{}".format(opt.data.dataset_test)),
os.path.join(opt.output_path, "results_test.html"), skip_every=10)
# torch.cuda.empty_cache()
return val_metric.item()
return float('inf')
def evaluate_batch(self, opt, var, ep=None, it=None, single_gpu=False):
var = util.move_to_device(var, opt.device)
if single_gpu:
var = self.graph.module(opt, var, training=False, get_loss=False)
else:
var = self.graph(opt, var, training=False, get_loss=False)
return var
@torch.no_grad()
def log_scalars(self, opt, var, loss, metric=None, step=0, split="train"):
if split=="train":
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
metric = dict(dist_acc=dist_acc, dist_cov=dist_cov)
for key, value in loss.items():
if key=="all": continue
self.tb.add_scalar("{0}/loss_{1}".format(split, key), value.mean(), step)
if metric is not None:
for key, value in metric.items():
self.tb.add_scalar("{0}/{1}".format(split, key), value, step)
# log the attention average values
if 'attn_geo_avg' in var:
self.tb.add_scalar("{0}/attn_geo_avg".format(split), var.attn_geo_avg, step)
if 'attn_geo_seen' in var:
self.tb.add_scalar("{0}/attn_geo_seen".format(split), var.attn_geo_seen, step)
if 'attn_geo_occl' in var:
self.tb.add_scalar("{0}/attn_geo_occl".format(split), var.attn_geo_occl, step)
if 'attn_geo_bg' in var:
self.tb.add_scalar("{0}/attn_geo_bg".format(split), var.attn_geo_bg, step)
@torch.no_grad()
def visualize(self, opt, var, step=0, split="train"):
if 'pose_input' in var:
pose_input = var.pose_input
elif 'pose_gt' in var:
pose_input = var.pose_gt
else:
pose_input = None
util_vis.tb_image(opt, self.tb, step, split, "image_input_map", var.rgb_input_map, masks=None, from_range=(0, 1), poses=pose_input)
util_vis.tb_image(opt, self.tb, step, split, "image_input_map_est", var.rgb_input_map, masks=None, from_range=(0, 1),
poses=var.pose_pred if 'pose_pred' in var else var.pose)
util_vis.tb_image(opt, self.tb, step, split, "mask_input_map", var.mask_input_map)
if 'depth_pred' in var:
util_vis.tb_image(opt, self.tb, step, split, "depth_est_map", var.depth_pred)
if 'depth_input_map' in var:
util_vis.tb_image(opt, self.tb, step, split, "depth_input_map", var.depth_input_map)
@torch.no_grad()
def dump_results(self, opt, var, ep, write_new=False, train=False):
# create the dir
current_folder = "dump_{}".format(opt.data.dataset_test) if train == False else "vis_{}".format(ep)
os.makedirs("{}/{}/".format(opt.output_path, current_folder), exist_ok=True)
# save the results
if 'pose_input' in var:
pose_input = var.pose_input
elif 'pose_gt' in var:
pose_input = var.pose_gt
else:
pose_input = None
util_vis.dump_images(opt, var.idx, "image_input", var.rgb_input_map, masks=None, from_range=(0, 1), poses=pose_input, folder=current_folder)
util_vis.dump_images(opt, var.idx, "mask_input", var.mask_input_map, folder=current_folder)
util_vis.dump_meshes(opt, var.idx, "mesh", var.mesh_pred, folder=current_folder)
util_vis.dump_meshes_viz(opt, var.idx, "mesh_viz", var.mesh_pred, folder=current_folder) # image frames + gifs
if 'depth_pred' in var:
util_vis.dump_depths(opt, var.idx, "depth_est", var.depth_pred, var.mask_input_map, rescale=True, folder=current_folder)
if 'depth_input_map' in var:
util_vis.dump_depths(opt, var.idx, "depth_input", var.depth_input_map, var.mask_input_map, rescale=True, folder=current_folder)
if 'gt_surf_points' in var and 'seen_points' in var:
util_vis.dump_pointclouds_compare(opt, var.idx, "seen_surface", var.seen_points, var.gt_surf_points, folder=current_folder)
if 'attn_vis' in var:
util_vis.dump_attentions(opt, var.idx, "attn", var.attn_vis, folder=current_folder)
if 'attn_pc' in var:
util_vis.dump_pointclouds(opt, var.idx, "attn_pc", var.attn_pc["points"], var.attn_pc["colors"], folder=current_folder)
if 'dpc' in var:
util_vis.dump_pointclouds_compare(opt, var.idx, "pointclouds_comp", var.dpc_pred, var.dpc.points, folder=current_folder)
def save_checkpoint(self, opt, ep=0, it=0, best_val=np.inf, best_ep=1, latest=False, best=False):
util.save_checkpoint(opt, self, ep=ep, it=it, best_val=best_val, best_ep=best_ep, latest=latest, best=best)
if not latest:
print("checkpoint saved: ({0}) {1}, epoch {2} (iteration {3})".format(opt.group, opt.name, ep, it))
if best:
print("Saving the current model as the best...")
|