Spaces:
Build error
Build error
File size: 12,030 Bytes
414b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import numpy as np
import torch
import torch.nn as nn
from functools import partial
from utils.layers import get_embedder
from utils.layers import LayerScale
from timm.models.vision_transformer import Mlp, DropPath
from utils.pos_embed import get_2d_sincos_pos_embed
class ImplFuncAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., last_layer=False):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.last_layer = last_layer
def forward(self, x, N_points):
B, N, C = x.shape
N_latent = N - N_points
# [3, B, num_heads, N, C/num_heads]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# [B, num_heads, N, C/num_heads]
q, k, v = qkv.unbind(0)
# [B, num_heads, N_latent, C/num_heads]
q_latent, k_latent, v_latent = q[:, :, :-N_points], k[:, :, :-N_points], v[:, :, :-N_points]
# [B, num_heads, N_points, C/num_heads]
q_points, k_points, v_points = q[:, :, -N_points:], k[:, :, -N_points:], v[:, :, -N_points:]
# attention weight for each point, it's only connected to the latent and itself
# [B, num_heads, N_points, N_latent+1]
# get the cross attention, [B, num_heads, N_points, N_latent]
attn_cross = (q_points @ k_latent.transpose(-2, -1)) * self.scale
# get the attention to self feature, [B, num_heads, N_points, 1]
attn_self = torch.sum(q_points * k_points, dim=-1, keepdim=True) * self.scale
# get the normalized attention, [B, num_heads, N_points, N_latent+1]
attn_joint = torch.cat([attn_cross, attn_self], dim=-1)
attn_joint = attn_joint.softmax(dim=-1)
attn_joint = self.attn_drop(attn_joint)
# break it down to weigh and sum the values
# [B, num_heads, N_points, N_latent] @ [B, num_heads, N_latent, C/num_heads]
# -> [B, num_heads, N_points, C/num_heads] -> [B, N_points, C]
sum_cross = (attn_joint[:, :, :, :N_latent] @ v_latent).transpose(1, 2).reshape(B, N_points, C)
# [B, num_heads, N_points, 1] * [B, num_heads, N_points, C/num_heads]
# -> [B, num_heads, N_points, C/num_heads] -> [B, N_points, C]
sum_self = (attn_joint[:, :, :, N_latent:] * v_points).transpose(1, 2).reshape(B, N_points, C)
# [B, N_points, C]
output_points = sum_cross + sum_self
if self.last_layer:
output = self.proj(output_points)
output = self.proj_drop(output)
# [B, N_points, C], [B, N_points, N_latent]
return output, attn_joint[..., :-1].mean(dim=1)
# attention weight for the latent vec, it's not connected to the points
# [B, num_heads, N_latent, N_latent]
attn_latent = (q_latent @ k_latent.transpose(-2, -1)) * self.scale
attn_latent = attn_latent.softmax(dim=-1)
attn_latent = self.attn_drop(attn_latent)
# get the output latent, [B, N_latent, C]
output_latent = (attn_latent @ v_latent).transpose(1, 2).reshape(B, N_latent, C)
# concatenate the output and return
output = torch.cat([output_latent, output_points], dim=1)
output = self.proj(output)
output = self.proj_drop(output)
# [B, N, C], [B, N_points, N_latent+1]
return output, attn_joint[..., :-1].mean(dim=1)
class ImplFuncBlock(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, last_layer=False):
super().__init__()
self.last_layer = last_layer
self.norm1 = norm_layer(dim)
self.attn = ImplFuncAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, last_layer=last_layer)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, unseen_size):
if self.last_layer:
attn_out, attn_vis = self.attn(self.norm1(x), unseen_size)
output = x[:, -unseen_size:] + self.drop_path1(self.ls1(attn_out))
output = output + self.drop_path2(self.ls2(self.mlp(self.norm2(output))))
return output, attn_vis
else:
attn_out, attn_vis = self.attn(self.norm1(x), unseen_size)
x = x + self.drop_path1(self.ls1(attn_out))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x, attn_vis
class LinearProj3D(nn.Module):
"""
Linear projection of 3D point into embedding space
"""
def __init__(self, embed_dim, posenc_res=0):
super().__init__()
self.embed_dim = embed_dim
# define positional embedder
self.embed_fn = None
input_ch = 3
if posenc_res > 0:
self.embed_fn, input_ch = get_embedder(posenc_res, input_dims=3)
# linear proj layer
self.proj = nn.Linear(input_ch, embed_dim)
def forward(self, points_3D):
if self.embed_fn is not None:
points_3D = self.embed_fn(points_3D)
return self.proj(points_3D)
class MLPBlocks(nn.Module):
def __init__(self, num_hidden_layers, n_channels, latent_dim,
skip_in=[], posenc_res=0):
super().__init__()
# projection to the same number of channels
self.dims = [3 + latent_dim] + [n_channels] * num_hidden_layers + [1]
self.num_layers = len(self.dims)
self.skip_in = skip_in
# define positional embedder
self.embed_fn = None
if posenc_res > 0:
embed_fn, input_ch = get_embedder(posenc_res, input_dims=3)
self.embed_fn = embed_fn
self.dims[0] += (input_ch - 3)
self.layers = nn.ModuleList([])
for l in range(0, self.num_layers - 1):
out_dim = self.dims[l + 1]
if l in self.skip_in:
in_dim = self.dims[l] + self.dims[0]
else:
in_dim = self.dims[l]
lin = nn.Linear(in_dim, out_dim)
self.layers.append(lin)
# register for param init
self.posenc_res = posenc_res
# activation
self.softplus = nn.Softplus(beta=100)
def forward(self, points, proj_latent):
# positional encoding
if self.embed_fn is not None:
points = self.embed_fn(points)
# forward by layer
# [B, N, posenc+C]
inputs = torch.cat([points, proj_latent], dim=-1)
x = inputs
for l in range(0, self.num_layers - 1):
if l in self.skip_in:
x = torch.cat([x, inputs], -1) / np.sqrt(2)
x = self.layers[l](x)
if l < self.num_layers - 2:
x = self.softplus(x)
return x
class Implicit(nn.Module):
"""
Implicit function conditioned on depth encodings
"""
def __init__(self,
num_patches, latent_dim=768, semantic=False, n_channels=512,
n_blocks_attn=2, n_layers_mlp=6, num_heads=16, posenc_3D=0,
mlp_ratio=4., norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_path=0.1,
skip_in=[], pos_perlayer=True):
super().__init__()
self.num_patches = num_patches
self.pos_perlayer = pos_perlayer
self.semantic = semantic
# projection to the same number of channels, no posenc
self.point_proj = LinearProj3D(n_channels)
self.latent_proj = nn.Linear(latent_dim, n_channels, bias=True)
# positional embedding for the depth latent codes
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, n_channels), requires_grad=False) # fixed sin-cos embedding
# multi-head attention blocks
self.blocks_attn = nn.ModuleList([
ImplFuncBlock(
n_channels, num_heads, mlp_ratio,
qkv_bias=True, norm_layer=norm_layer, drop_path=drop_path
) for _ in range(n_blocks_attn-1)])
self.blocks_attn.append(
ImplFuncBlock(
n_channels, num_heads, mlp_ratio,
qkv_bias=True, norm_layer=norm_layer, drop_path=drop_path, last_layer=True
)
)
self.norm = norm_layer(n_channels)
self.impl_mlp = None
# define the impl MLP
if n_layers_mlp > 0:
self.impl_mlp = MLPBlocks(n_layers_mlp, n_channels, n_channels,
skip_in=skip_in, posenc_res=posenc_3D)
else:
# occ and color prediction
self.pred_head = nn.Linear(n_channels, 1, bias=True)
self.initialize_weights()
def initialize_weights(self):
# initialize the positional embedding for the depth latent codes
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, latent_depth, latent_semantic, points_3D):
# concatenate latent codes if semantic is used
latent = torch.cat([latent_depth, latent_semantic], dim=-1) if self.semantic else latent_depth
# project latent code and add posenc
# [B, 1+n_patches, C]
latent = self.latent_proj(latent)
N_latent = latent.shape[1]
# project query points
# [B, n_points, C_dec]
points_feat = self.point_proj(points_3D)
# concat point feat with latent
# [B, 1+n_patches+n_points, C_dec]
output = torch.cat([latent, points_feat], dim=1)
# apply multi-head attention blocks
attn_vis = []
for l, blk in enumerate(self.blocks_attn):
if self.pos_perlayer or l == 0:
output[:, :N_latent] = output[:, :N_latent] + self.pos_embed
output, attn = blk(output, points_feat.shape[1])
attn_vis.append(attn)
output = self.norm(output)
# average of attention weights across layers, [B, N_points, N_latent+1]
attn_vis = torch.stack(attn_vis, dim=-1).mean(dim=-1)
if self.impl_mlp:
# apply mlp blocks
output = self.impl_mlp(points_3D, output)
else:
# predictor projection
# [B, n_points, 1]
output = self.pred_head(output)
# return the occ logit of shape [B, n_points] and the attention weights if needed
return output.squeeze(-1), attn_vis
|