# Copyright (c) 2023-2024, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.nn as nn from .modulate import ModLN class BasicBlock(nn.Module): """ Transformer block that is in its simplest form. Designed for PF-LRM architecture. """ # Block contains a self-attention layer and an MLP def __init__(self, inner_dim: int, num_heads: int, eps: float, attn_drop: float = 0., attn_bias: bool = False, mlp_ratio: float = 4., mlp_drop: float = 0.): super().__init__() self.norm1 = nn.LayerNorm(inner_dim, eps=eps) self.self_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm2 = nn.LayerNorm(inner_dim, eps=eps) self.mlp = nn.Sequential( nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), nn.GELU(), nn.Dropout(mlp_drop), nn.Linear(int(inner_dim * mlp_ratio), inner_dim), nn.Dropout(mlp_drop), ) def forward(self, x): # x: [N, L, D] before_sa = self.norm1(x) x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] x = x + self.mlp(self.norm2(x)) return x class ConditionBlock(nn.Module): """ Transformer block that takes in a cross-attention condition. Designed for SparseLRM architecture. """ # Block contains a cross-attention layer, a self-attention layer, and an MLP def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float, attn_drop: float = 0., attn_bias: bool = False, mlp_ratio: float = 4., mlp_drop: float = 0.): super().__init__() self.norm1 = nn.LayerNorm(inner_dim, eps=eps) self.cross_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm2 = nn.LayerNorm(inner_dim, eps=eps) self.self_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm3 = nn.LayerNorm(inner_dim, eps=eps) self.mlp = nn.Sequential( nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), nn.GELU(), nn.Dropout(mlp_drop), nn.Linear(int(inner_dim * mlp_ratio), inner_dim), nn.Dropout(mlp_drop), ) def forward(self, x, cond): # x: [N, L, D] # cond: [N, L_cond, D_cond] x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0] before_sa = self.norm2(x) x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] x = x + self.mlp(self.norm3(x)) return x class ConditionModulationBlock(nn.Module): """ Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. Designed for raw LRM architecture. """ # Block contains a cross-attention layer, a self-attention layer, and an MLP def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float, attn_drop: float = 0., attn_bias: bool = False, mlp_ratio: float = 4., mlp_drop: float = 0.): super().__init__() self.norm1 = ModLN(inner_dim, mod_dim, eps) self.cross_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm2 = ModLN(inner_dim, mod_dim, eps) self.self_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm3 = ModLN(inner_dim, mod_dim, eps) self.mlp = nn.Sequential( nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), nn.GELU(), nn.Dropout(mlp_drop), nn.Linear(int(inner_dim * mlp_ratio), inner_dim), nn.Dropout(mlp_drop), ) def forward(self, x, cond, mod): # x: [N, L, D] # cond: [N, L_cond, D_cond] # mod: [N, D_mod] x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0] before_sa = self.norm2(x, mod) x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] x = x + self.mlp(self.norm3(x, mod)) return x