Spaces:
Sleeping
Sleeping
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from accelerate.logging import get_logger | |
from .embedder import CameraEmbedder | |
from .transformer import TransformerDecoder | |
from .rendering.synthesizer import TriplaneSynthesizer | |
logger = get_logger(__name__) | |
class ModelLRM(nn.Module): | |
""" | |
Full model of the basic single-view large reconstruction model. | |
""" | |
def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int, | |
transformer_dim: int, transformer_layers: int, transformer_heads: int, | |
triplane_low_res: int, triplane_high_res: int, triplane_dim: int, | |
encoder_freeze: bool = True, encoder_type: str = 'dino', | |
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768): | |
super().__init__() | |
# attributes | |
self.encoder_feat_dim = encoder_feat_dim | |
self.camera_embed_dim = camera_embed_dim | |
self.triplane_low_res = triplane_low_res | |
self.triplane_high_res = triplane_high_res | |
self.triplane_dim = triplane_dim | |
# modules | |
self.encoder = self._encoder_fn(encoder_type)( | |
model_name=encoder_model_name, | |
freeze=encoder_freeze, | |
) | |
self.camera_embedder = CameraEmbedder( | |
raw_dim=12+4, embed_dim=camera_embed_dim, | |
) | |
# initialize pos_embed with 1/sqrt(dim) * N(0, 1) | |
self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, transformer_dim) * (1. / transformer_dim) ** 0.5) | |
self.transformer = TransformerDecoder( | |
block_type='cond_mod', | |
num_layers=transformer_layers, num_heads=transformer_heads, | |
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=camera_embed_dim, | |
) | |
self.upsampler = nn.ConvTranspose2d(transformer_dim, triplane_dim, kernel_size=2, stride=2, padding=0) | |
self.synthesizer = TriplaneSynthesizer( | |
triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray, | |
) | |
def _encoder_fn(encoder_type: str): | |
encoder_type = encoder_type.lower() | |
assert encoder_type in ['dino', 'dinov2'], "Unsupported encoder type" | |
if encoder_type == 'dino': | |
from .encoders.dino_wrapper import DinoWrapper | |
logger.info("Using DINO as the encoder") | |
return DinoWrapper | |
elif encoder_type == 'dinov2': | |
from .encoders.dinov2_wrapper import Dinov2Wrapper | |
logger.info("Using DINOv2 as the encoder") | |
return Dinov2Wrapper | |
def forward_transformer(self, image_feats, camera_embeddings): | |
assert image_feats.shape[0] == camera_embeddings.shape[0], \ | |
"Batch size mismatch for image_feats and camera_embeddings!" | |
N = image_feats.shape[0] | |
x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] | |
x = self.transformer( | |
x, | |
cond=image_feats, | |
mod=camera_embeddings, | |
) | |
return x | |
def reshape_upsample(self, tokens): | |
N = tokens.shape[0] | |
H = W = self.triplane_low_res | |
x = tokens.view(N, 3, H, W, -1) | |
x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] | |
x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] | |
x = self.upsampler(x) # [3*N, D', H', W'] | |
x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] | |
x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] | |
x = x.contiguous() | |
return x | |
def forward_planes(self, image, camera): | |
# image: [N, C_img, H_img, W_img] | |
# camera: [N, D_cam_raw] | |
N = image.shape[0] | |
# encode image | |
image_feats = self.encoder(image) | |
assert image_feats.shape[-1] == self.encoder_feat_dim, \ | |
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" | |
# embed camera | |
camera_embeddings = self.camera_embedder(camera) | |
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ | |
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" | |
# transformer generating planes | |
tokens = self.forward_transformer(image_feats, camera_embeddings) | |
planes = self.reshape_upsample(tokens) | |
assert planes.shape[0] == N, "Batch size mismatch for planes" | |
assert planes.shape[1] == 3, "Planes should have 3 channels" | |
return planes | |
def forward(self, image, source_camera, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size: int): | |
# image: [N, C_img, H_img, W_img] | |
# source_camera: [N, D_cam_raw] | |
# render_cameras: [N, M, D_cam_render] | |
# render_anchors: [N, M, 2] | |
# render_resolutions: [N, M, 1] | |
# render_bg_colors: [N, M, 1] | |
# render_region_size: int | |
assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera" | |
assert image.shape[0] == render_cameras.shape[0], "Batch size mismatch for image and render_cameras" | |
assert image.shape[0] == render_anchors.shape[0], "Batch size mismatch for image and render_anchors" | |
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors" | |
N, M = render_cameras.shape[:2] | |
planes = self.forward_planes(image, source_camera) | |
# render target views | |
render_results = self.synthesizer(planes, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size) | |
assert render_results['images_rgb'].shape[0] == N, "Batch size mismatch for render_results" | |
assert render_results['images_rgb'].shape[1] == M, "Number of rendered views should be consistent with render_cameras" | |
return { | |
'planes': planes, | |
**render_results, | |
} | |