import gradio as gr import spaces import torch from gradio_imageslider import ImageSlider from diffusers import DiffusionPipeline, AutoencoderTiny from controlnet_union import ControlNetModel_Union from custom_pipeline import FluxWithCFGPipeline # Device and model setup dtype = torch.float16 pipe = FluxWithCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) # pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast") # pipe.set_adapters("fast") # pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0) pipe.to("cuda") # pipe.transformer.to(memory_format=torch.channels_last) # pipe.transformer = torch.compile( # pipe.transformer, mode="max-autotune", fullgraph=True # ) torch.cuda.empty_cache() @spaces.GPU(duration=25) def fill_image(prompt, image, paste_back): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(prompt, "cuda", True) source = image["background"] mask = image["layers"][0] alpha_channel = mask.split()[3] binary_mask = alpha_channel.point(lambda p: p > 0 and 255) cnet_image = source.copy() cnet_image.paste(0, (0, 0), binary_mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image print(f"{paste_back=}") if paste_back: image = image.convert("RGBA") cnet_image.paste(image, (0, 0), binary_mask) else: cnet_image = image yield source, cnet_image def clear_result(): return gr.update(value=None) title = """