import streamlit as st import numpy as np import plotly.graph_objs as go import sympy as sp st.set_page_config(page_title="Gradient Descent Visualizer", layout="wide") # inputs st.sidebar.header("Gradient Descent Settings") func_input = st.sidebar.text_input("Enter a function (use 'x'):", "x**2") learning_rate = st.sidebar.number_input("Learning Rate", min_value=0.001, max_value=1.0, value=0.1, step=0.01) initial_x = st.sidebar.number_input("Initial X", min_value=-10.0, max_value=10.0, value=5.0, step=0.1) # Reset when functin changes if "previous_func" not in st.session_state or st.session_state.previous_func != func_input: st.session_state.current_x = initial_x st.session_state.iteration = 0 st.session_state.path = [(initial_x, 0)] st.session_state.previous_func = func_input # Symbolic computation x = sp.symbols('x') try: func = sp.sympify(func_input) derivative = sp.diff(func, x) func_np = sp.lambdify(x, func, 'numpy') derivative_np = sp.lambdify(x, derivative, 'numpy') except Exception as e: st.error(f"Invalid function: {e}") st.stop() # Gradient Descent Function def step_gradient_descent(current_x, lr): grad = derivative_np(current_x) next_x = current_x - lr * grad return next_x, grad # for next itertions if st.sidebar.button("Next Iteration"): next_x, _ = step_gradient_descent(st.session_state.current_x, learning_rate) st.session_state.path.append((st.session_state.current_x, func_np(st.session_state.current_x))) st.session_state.current_x = next_x st.session_state.iteration += 1 # Calculate actual minima critical_points = sp.solve(derivative, x) actual_minima = [p.evalf() for p in critical_points if derivative_np(p) == 0 and sp.diff(derivative, x).evalf(subs={x: p}) > 0] # Generate graph x_vals = np.linspace(-15, 15, 1000) y_vals = func_np(x_vals) fig = go.Figure() # Function Plot fig.add_trace(go.Scatter( x=x_vals, y=y_vals, mode='lines', line=dict(color='blue', width=2), hoverinfo='none' )) # Gradient Descent Path path = st.session_state.path x_path, y_path = zip(*[(pt[0], func_np(pt[0])) for pt in path]) fig.add_trace(go.Scatter( x=x_path, y=y_path, mode='markers+lines', marker=dict(color='red', size=8), line=dict(color='red', width=2), hoverinfo='none' )) # Highlight the current point on graph fig.add_trace(go.Scatter( x=[st.session_state.current_x], y=[func_np(st.session_state.current_x)], mode='markers', marker=dict(color='orange', size=12), name="Current Point", hoverinfo='none')) # Highlight Actual Minima if actual_minima: minima_x = [float(p) for p in actual_minima] minima_y = [func_np(p) for p in minima_x] fig.add_trace(go.Scatter( x=minima_x, y=minima_y, mode='markers', marker=dict(color='green', size=14, symbol='star'), name="Actual Minima", hoverinfo='text', text=[f"x = {x_val:.4f}, f(x) = {y_val:.4f}" for x_val, y_val in zip(minima_x, minima_y)] )) # Add Cross-Axes (X and Y lines) fig.add_trace(go.Scatter( x=[-15, 15], y=[0, 0], mode='lines', line=dict(color='black', width=1, dash='dash'), hoverinfo='none' )) fig.add_trace(go.Scatter( x=[0, 0], y=[-15, 15], mode='lines', line=dict(color='black', width=1, dash='dash'), hoverinfo='none' )) # Layout Configuration fig.update_layout( title="Gradient Descent Visualization", xaxis=dict( title="X", zeroline=True, zerolinewidth=1, zerolinecolor='black', tickvals=np.arange(-15, 16, 5), range=[-15, 15] ), yaxis=dict( title="f(X)", zeroline=True, zerolinewidth=1, zerolinecolor='black', tickvals=np.arange(-15, 16, 5), range=[-15, 15] ), showlegend=False, hovermode="closest", dragmode="pan", #removed extra space autosize=True, ) st.markdown("### Gradient Descent Visualization") st.plotly_chart(fig, use_container_width=True) #current point st.write(f"**Current Point (x):** {st.session_state.current_x:.4f}") #iteration history st.write("### Iteration History:") for i, (x_val, _) in enumerate(st.session_state.path): st.write(f"Iteration {i+1}: x = {x_val:.4f}")