import gradio as gr import xgboost import pandas as pd import numpy as np def greet(name): return "Hello " + name + "!!" def predict(SpO2, Age, Weight, Height, Temperature, Gender, Race): xgb_reg = xgboost.XGBClassifier(tree_method = 'approx', enable_categorical = True, learning_rate=.1, max_depth=2, n_estimators=70, early_stopping_rounds = 0, scale_pos_weight=1) xgb_reg.load_model('classifier_fewer_features_HH.json') if Gender == "Male": gen = "M" elif Gender == "Female": gen = "F" user_input = pd.DataFrame([SpO2,Age,Weight,Height,Temperature,gen,Race]) return user_input['gen'] demo = gr.Interface( fn=predict, inputs=[gr.Slider(0, 100),"number",gr.inputs.Number(label = "Weight in kg"),"number","number",gr.Radio(["Male", "Female"]),gr.Radio(["White", "Black", "Asian", "Hispanic", "Other"])], outputs=["text"], ) demo.launch()