import torch import numpy as np from transformers import pipeline from transformers import BarkModel from transformers import AutoProcessor device="cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v2", device=device ) processor = AutoProcessor.from_pretrained("suno/bark") model = BarkModel.from_pretrained("suno/bark") model = model.to(device) synthesised_rate = model.generation_config.sample_rate def translate(audio): outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) return outputs["text"] def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): inputs = processor(text_prompt, voice_preset=voice_preset) speech_output = model.generate(**inputs.to(device),pad_token_id=10000) return speech_output def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): translated_text = translate(audio) synthesised_speech = synthesise(translated_text,voice_preset) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return synthesised_rate , synthesised_speech ,translated_text def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"): synthesised_rate,synthesised_speech,translated_text = speech_to_speech_translation(audio,voice_preset) return (synthesised_rate,synthesised_speech.T),translated_text title = "Multilanguage to Chinese(mandarin) Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ examples = [ ["./cs-CZ.mp3", None], ["./de-DE.mp3", None], ["./en-AU.mp3", None], ["./en-GB.mp3", None], ["./en-US.mp3", None], ["./es-ES.mp3", None], ["./fr-FR.mp3", None], ["./it-IT.mp3", None], ["./ko-KR.mp3", None], ["./nl-NL.mp3", None], ["./pl-PL.mp3", None], ["./pt-PT.mp3", None], ["./ru-RU.mp3", None], ] import gradio as gr demo = gr.Blocks() file_transcribe = gr.Interface( fn=speech_to_speech_translation_fix, inputs=gr.Audio(source="upload", type="filepath"), outputs=[ gr.Audio(label="Generated Speech", type="numpy"), gr.Text(label="Transcription"), ], title=title, description=description, examples=examples, ) mic_transcribe = gr.Interface( fn=speech_to_speech_translation_fix, inputs=gr.Audio(source="microphone", type="filepath"), outputs=[ gr.Audio(label="Generated Speech", type="numpy"), gr.Text(label="Transcription"), ], title=title, description=description, ) with demo: gr.TabbedInterface( [file_transcribe, mic_transcribe], ["Transcribe Audio File", "Transcribe Microphone"], ) demo.launch(share=True)